2025-07-14 01:41:39 +04:00

1779 lines
84 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.2 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated by
% biber as required.
%
\begingroup
\makeatletter
\@ifundefined{ver@biblatex.sty}
{\@latex@error
{Missing 'biblatex' package}
{The bibliography requires the 'biblatex' package.}
\aftergroup\endinput}
{}
\endgroup
\refsection{0}
\datalist[entry]{nty/global//global/global}
\entry{Ahmed2023}{article}{}
\name{author}{3}{}{%
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
family={Ahmed},
familyi={A\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=8da5f61983121a25e044ca92bd036b2a}{%
family={Fardan},
familyi={F\bibinitperiod},
given={A.},
giveni={A\bibinitperiod}}}%
{{hash=0e68382b25995f7a55c9b600def7c365}{%
family={Davies},
familyi={D\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{b3a15b2b31620e3640b3b3a16271687c}
\strng{fullhash}{b3a15b2b31620e3640b3b3a16271687c}
\strng{bibnamehash}{b3a15b2b31620e3640b3b3a16271687c}
\strng{authorbibnamehash}{b3a15b2b31620e3640b3b3a16271687c}
\strng{authornamehash}{b3a15b2b31620e3640b3b3a16271687c}
\strng{authorfullhash}{b3a15b2b31620e3640b3b3a16271687c}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Stellite alloys have good wear resistance and maintain their strength up to ~ 600°C, making them suitable for various industrial applications like cutting tools and combustion engine parts. This investigation was aimed at i) manufacturing new Stellite alloy blends using powder metallurgy and ii) mathematically mapping hardness, yield strength, ductility and impact energy of base and alloy blends. Linear, exponential, polynomial approximations and dimensional analyses were conducted in this semi-empirical mathematical modelling approach. Base alloy compositions similar to Stellite 1, 4, 6, 12, 20 and 190 were used in this investigation to form new alloys via blends. The microstructure was analysed using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Mechanical performance of alloys was conducted using tensile, hardness and Charpy impact tests. MATLAB® coding was used for the development of property maps. This investigation indicates that hardness and yield strength can be linked to the wt.\% composition of carbon and tungsten using linear approximation with a maximum variance of 5\% and 20\%, respectively. Elongation and carbide fraction showed a non-linear relationship with alloy composition. Impact energy was linked with elongation through polynomial approximation. A dimensional analysis was developed by interlinking carbide fraction, hardness, yield strength, and elongation to impact energy. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.}
\field{journaltitle}{Advances in Materials and Processing Technologies}
\field{note}{Cited by: 0; All Open Access, Green Open Access, Hybrid Gold Open Access}
\field{title}{Mapping the mechanical properties of cobalt-based stellite alloys manufactured via blending}
\field{type}{Article}
\field{year}{2023}
\verb{doi}
\verb 10.1080/2374068X.2023.2220242
\endverb
\endentry
\entry{Ahmed2021}{article}{}
\name{author}{3}{}{%
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
family={Ahmed},
familyi={A\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=75bf7913ab7463c6e3734bec975046fc}{%
family={Villiers\bibnamedelima Lovelock},
familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod},
given={H.L.},
giveni={H\bibinitperiod},
prefix={de},
prefixi={d\bibinitperiod}}}%
{{hash=0e68382b25995f7a55c9b600def7c365}{%
family={Davies},
familyi={D\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{652318761812c14e2605b641664892df}
\strng{fullhash}{652318761812c14e2605b641664892df}
\strng{bibnamehash}{652318761812c14e2605b641664892df}
\strng{authorbibnamehash}{652318761812c14e2605b641664892df}
\strng{authornamehash}{652318761812c14e2605b641664892df}
\strng{authorfullhash}{652318761812c14e2605b641664892df}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Wear}
\field{note}{Cited by: 13}
\field{title}{Sliding wear of blended cobalt based alloys}
\field{type}{Article}
\field{volume}{466-467}
\field{year}{2021}
\verb{doi}
\verb 10.1016/j.wear.2020.203533
\endverb
\endentry
\entry{Ahmed20138}{article}{}
\name{author}{4}{}{%
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
family={Ahmed},
familyi={A\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=90d1257b440b700fe96abc0fb7860ee5}{%
family={De\bibnamedelima Villiers\bibnamedelima Lovelock},
familyi={D\bibinitperiod\bibinitdelim V\bibinitperiod\bibinitdelim L\bibinitperiod},
given={H.L.},
giveni={H\bibinitperiod}}}%
{{hash=0e68382b25995f7a55c9b600def7c365}{%
family={Davies},
familyi={D\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
{{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{%
family={Faisal},
familyi={F\bibinitperiod},
given={N.H.},
giveni={N\bibinitperiod}}}%
}
\strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{fullhash}{c6a8d5afe5f72a23b8788190a54e743a}
\strng{bibnamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{authorbibnamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{authorfullhash}{c6a8d5afe5f72a23b8788190a54e743a}
\field{extraname}{1}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Tribology International}
\field{note}{Cited by: 33}
\field{title}{Influence of Re-HIPing on the structure-property relationships of cobalt-based alloys}
\field{type}{Article}
\field{volume}{57}
\field{year}{2013}
\field{pages}{8\bibrangedash 21}
\range{pages}{14}
\verb{doi}
\verb 10.1016/j.triboint.2012.06.025
\endverb
\endentry
\entry{Ahmed201470}{article}{}
\name{author}{7}{}{%
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
family={Ahmed},
familyi={A\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=b552922eec4e7175e66609f3e11152e3}{%
family={Ashraf},
familyi={A\bibinitperiod},
given={A.},
giveni={A\bibinitperiod}}}%
{{hash=145daf06393e14faf89e790de4a50404}{%
family={Elameen},
familyi={E\bibinitperiod},
given={M.},
giveni={M\bibinitperiod}}}%
{{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{%
family={Faisal},
familyi={F\bibinitperiod},
given={N.H.},
giveni={N\bibinitperiod}}}%
{{hash=5bf83cf496101d151bbd94a2cca8bbc2}{%
family={El-Sherik},
familyi={E\bibinithyphendelim S\bibinitperiod},
given={A.M.},
giveni={A\bibinitperiod}}}%
{{hash=f360754165e65bab8e87dd3e7aca95bd}{%
family={Elakwah},
familyi={E\bibinitperiod},
given={Y.O.},
giveni={Y\bibinitperiod}}}%
{{hash=1b3addb2e90c3e138b74db31e00608e8}{%
family={Goosen},
familyi={G\bibinitperiod},
given={M.F.A.},
giveni={M\bibinitperiod}}}%
}
\strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{fullhash}{556606f570f2a5902b98e54ed6912e82}
\strng{bibnamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{authorbibnamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
\strng{authorfullhash}{556606f570f2a5902b98e54ed6912e82}
\field{extraname}{2}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Wear}
\field{note}{cited By 41}
\field{number}{1-2}
\field{title}{Single asperity nanoscratch behaviour of HIPed and cast Stellite 6 alloys}
\field{volume}{312}
\field{year}{2014}
\field{pages}{70\bibrangedash 82}
\range{pages}{13}
\verb{doi}
\verb 10.1016/j.wear.2014.02.006
\endverb
\endentry
\entry{Ashworth1999243}{article}{}
\name{author}{4}{}{%
{{hash=a0a9668f5a93080c8425a8cf80e9d0d2}{%
family={Ashworth},
familyi={A\bibinitperiod},
given={M.A.},
giveni={M\bibinitperiod}}}%
{{hash=861f02603fbb24a7065a7efd1c8a7e84}{%
family={Bryar},
familyi={B\bibinitperiod},
given={J.C.},
giveni={J\bibinitperiod}}}%
{{hash=27753a82b6390957cb920ec5052f0810}{%
family={Jacobs},
familyi={J\bibinitperiod},
given={M.H.},
giveni={M\bibinitperiod}}}%
{{hash=0e68382b25995f7a55c9b600def7c365}{%
family={Davies},
familyi={D\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
}
\list{language}{1}{%
{English}%
}
\list{publisher}{1}{%
{Maney Publishing}%
}
\strng{namehash}{abac9b3a3bd887c0c8dedb4a4e169c92}
\strng{fullhash}{21073b0f0b4358cee2a29a604087751a}
\strng{bibnamehash}{abac9b3a3bd887c0c8dedb4a4e169c92}
\strng{authorbibnamehash}{abac9b3a3bd887c0c8dedb4a4e169c92}
\strng{authornamehash}{abac9b3a3bd887c0c8dedb4a4e169c92}
\strng{authorfullhash}{21073b0f0b4358cee2a29a604087751a}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{In the present paper the microstructure and properties of a range of hipped Stellite powders are investigated, the basic aim of the study being to generate a material/property database to facilitate alloy selection for potential applications involving net shape component manufacture. Particular attention is paid to the morphology, particle size distribution, and surface composition of the as atomised powders and their effect on subsequent consolidation. The consolidated powders are fully characterised in terms of microstructure and the composition and distribution of secondary phases. The effect of hipping temperature on the microstructure, hardness, and tensile properties of the powders are discussed in terms of the optimum processing temperature for the various alloys.}
\field{issn}{00325899}
\field{journaltitle}{Powder Metallurgy}
\field{note}{Cited by: 21}
\field{number}{3}
\field{title}{Microstructure and property relationships in hipped Stellite powders}
\field{type}{Article}
\field{volume}{42}
\field{year}{1999}
\field{pages}{243\bibrangedash 249}
\range{pages}{7}
\verb{doi}
\verb 10.1179/003258999665585
\endverb
\keyw{Consolidation; Hardness; Hot isostatic pressing; Metallographic microstructure; Metallographic phases; Morphology; Particle size analysis; Powder metals; Surface structure; Tensile properties; Thermal effects; Wear resistance; Atomised powders; Hipped stellite powders; Net shape component manufacture; Stellite}
\endentry
\entry{Chen201442}{article}{}
\name{author}{3}{}{%
{{hash=9ce5142cfd8d1c2cef3d3a1795a6e892}{%
family={Chen},
familyi={C\bibinitperiod},
given={Fei-Jun},
giveni={F\bibinithyphendelim J\bibinitperiod}}}%
{{hash=551ea7bc38f82912c2ee4f39b5f986bd}{%
family={Yao},
familyi={Y\bibinitperiod},
given={Cheng},
giveni={C\bibinitperiod}}}%
{{hash=2d4d6ada5ba6b8efe68970cb2a98d162}{%
family={Yang},
familyi={Y\bibinitperiod},
given={Zhen-Guo},
giveni={Z\bibinithyphendelim G\bibinitperiod}}}%
}
\strng{namehash}{caad37e42c6b5d7dd4d918243ee2fc46}
\strng{fullhash}{caad37e42c6b5d7dd4d918243ee2fc46}
\strng{bibnamehash}{caad37e42c6b5d7dd4d918243ee2fc46}
\strng{authorbibnamehash}{caad37e42c6b5d7dd4d918243ee2fc46}
\strng{authornamehash}{caad37e42c6b5d7dd4d918243ee2fc46}
\strng{authorfullhash}{caad37e42c6b5d7dd4d918243ee2fc46}
\field{sortinit}{C}
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Engineering Failure Analysis}
\field{note}{Cited by: 44}
\field{title}{Failure analysis on abnormal wall thinning of heat-transfer titanium tubes of condensers in nuclear power plant Part II: Erosion and cavitation corrosion}
\field{type}{Article}
\field{volume}{37}
\field{year}{2014}
\field{pages}{42\bibrangedash 52}
\range{pages}{11}
\verb{doi}
\verb 10.1016/j.engfailanal.2013.11.002
\endverb
\endentry
\entry{Cheng2023}{article}{}
\name{author}{6}{}{%
{{hash=8f654dacacc03006195979b12b096c07}{%
family={Cheng},
familyi={C\bibinitperiod},
given={Feng},
giveni={F\bibinitperiod}}}%
{{hash=6d764bc3263d41bbaa6cf2479004c3aa}{%
family={Wu},
familyi={W\bibinitperiod},
given={Fujia},
giveni={F\bibinitperiod}}}%
{{hash=557b5bf05ca404c8f58d52b022bcc787}{%
family={Wang},
familyi={W\bibinitperiod},
given={Shuo},
giveni={S\bibinitperiod}}}%
{{hash=2edd70af216c3594995fd9e5ed10f73d}{%
family={Peng},
familyi={P\bibinitperiod},
given={Xiaoxing},
giveni={X\bibinitperiod}}}%
{{hash=58c0f4ca7214428a8b177e0725ddb48f}{%
family={Cao},
familyi={C\bibinitperiod},
given={Yantao},
giveni={Y\bibinitperiod}}}%
{{hash=1072e46f1428ee437063f36eb2e2e95b}{%
family={Yang},
familyi={Y\bibinitperiod},
given={Shifei},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{e113b101a5313ae720de2277f2e0cf4e}
\strng{fullhash}{7f9b261ccc10218511f63a5abc4406a0}
\strng{bibnamehash}{e113b101a5313ae720de2277f2e0cf4e}
\strng{authorbibnamehash}{e113b101a5313ae720de2277f2e0cf4e}
\strng{authornamehash}{e113b101a5313ae720de2277f2e0cf4e}
\strng{authorfullhash}{7f9b261ccc10218511f63a5abc4406a0}
\field{sortinit}{C}
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Tribology International}
\field{note}{Cited by: 2}
\field{title}{A prediction model for suction cavitation erosion in a journal bearing}
\field{type}{Article}
\field{volume}{184}
\field{year}{2023}
\verb{doi}
\verb 10.1016/j.triboint.2023.108424
\endverb
\endentry
\entry{Crook1992766}{article}{}
\name{author}{2}{}{%
{{hash=16985215fbfc4124567154cd4ca61487}{%
family={Crook},
familyi={C\bibinitperiod},
given={P.},
giveni={P\bibinitperiod}}}%
{{hash=c17dfa16af9603e39212f8cc1ee2f33c}{%
family={Levy},
familyi={L\bibinitperiod},
given={A.V.},
giveni={A\bibinitperiod}}}%
}
\strng{namehash}{326c5b78ffecefc4d75abb404fd22a9e}
\strng{fullhash}{326c5b78ffecefc4d75abb404fd22a9e}
\strng{bibnamehash}{326c5b78ffecefc4d75abb404fd22a9e}
\strng{authorbibnamehash}{326c5b78ffecefc4d75abb404fd22a9e}
\strng{authornamehash}{326c5b78ffecefc4d75abb404fd22a9e}
\strng{authorfullhash}{326c5b78ffecefc4d75abb404fd22a9e}
\field{sortinit}{C}
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{ASM Handbook}
\field{note}{cited By 18}
\field{title}{Friction and wear of cobalt-base wrought alloys}
\field{volume}{18}
\field{year}{1992}
\field{pages}{766\bibrangedash 771}
\range{pages}{6}
\endentry
\entry{Crook199427}{article}{}
\name{author}{1}{}{%
{{hash=20721170e33be8ab372be42b8a0606cf}{%
family={Crook},
familyi={C\bibinitperiod},
given={Paul},
giveni={P\bibinitperiod}}}%
}
\strng{namehash}{20721170e33be8ab372be42b8a0606cf}
\strng{fullhash}{20721170e33be8ab372be42b8a0606cf}
\strng{bibnamehash}{20721170e33be8ab372be42b8a0606cf}
\strng{authorbibnamehash}{20721170e33be8ab372be42b8a0606cf}
\strng{authornamehash}{20721170e33be8ab372be42b8a0606cf}
\strng{authorfullhash}{20721170e33be8ab372be42b8a0606cf}
\field{sortinit}{C}
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Advanced Materials and Processes}
\field{note}{cited By 22}
\field{number}{4}
\field{title}{Cobalt-base alloys resist wear, corrosion, and heat}
\field{volume}{145}
\field{year}{1994}
\field{pages}{27\bibrangedash 30}
\range{pages}{4}
\endentry
\entry{Desai198489}{article}{}
\name{author}{4}{}{%
{{hash=fc05df304d9bc11398a5c124af37591d}{%
family={Desai},
familyi={D\bibinitperiod},
given={V.M.},
giveni={V\bibinitperiod}}}%
{{hash=ec550afc1e3aea4900fb58655a64f6da}{%
family={Rao},
familyi={R\bibinitperiod},
given={C.M.},
giveni={C\bibinitperiod}}}%
{{hash=33b6be2f67c7c521e0d9dd2e94cb03fa}{%
family={Kosel},
familyi={K\bibinitperiod},
given={T.H.},
giveni={T\bibinitperiod}}}%
{{hash=1ad7f5a75d8dc26e538ca7e4d233e622}{%
family={Fiore},
familyi={F\bibinitperiod},
given={N.F.},
giveni={N\bibinitperiod}}}%
}
\strng{namehash}{aeae2b334e415789011cf05b2beda57d}
\strng{fullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de}
\strng{bibnamehash}{aeae2b334e415789011cf05b2beda57d}
\strng{authorbibnamehash}{aeae2b334e415789011cf05b2beda57d}
\strng{authornamehash}{aeae2b334e415789011cf05b2beda57d}
\strng{authorfullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de}
\field{sortinit}{D}
\field{sortinithash}{6f385f66841fb5e82009dc833c761848}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Wear}
\field{note}{cited By 57}
\field{number}{1}
\field{title}{Effect of carbide size on the abrasion of cobalt-base powder metallurgy alloys}
\field{volume}{94}
\field{year}{1984}
\field{pages}{89\bibrangedash 101}
\range{pages}{13}
\verb{doi}
\verb 10.1016/0043-1648(84)90168-6
\endverb
\endentry
\entry{Ding201797}{article}{}
\name{author}{5}{}{%
{{hash=2eaf2f6ae9a17a6cd4c7c02fce21d700}{%
family={Ding},
familyi={D\bibinitperiod},
given={Yinping},
giveni={Y\bibinitperiod}}}%
{{hash=6e0407cf2820edaaaeebbc9f383e0490}{%
family={Liu},
familyi={L\bibinitperiod},
given={Rong},
giveni={R\bibinitperiod}}}%
{{hash=2b00ca9ea5084e5849e3a5a7ed7bda50}{%
family={Yao},
familyi={Y\bibinitperiod},
given={Jianhua},
giveni={J\bibinitperiod}}}%
{{hash=1f585645b6265eaf4aecf3077e06bac5}{%
family={Zhang},
familyi={Z\bibinitperiod},
given={Qunli},
giveni={Q\bibinitperiod}}}%
{{hash=cce05cab2c437e9c128f853684ee3137}{%
family={Wang},
familyi={W\bibinitperiod},
given={Liang},
giveni={L\bibinitperiod}}}%
}
\strng{namehash}{0d002b7be241610612472ae1588e166c}
\strng{fullhash}{f3b9bb41ad54f4d97f9ff1df2a6b4a28}
\strng{bibnamehash}{0d002b7be241610612472ae1588e166c}
\strng{authorbibnamehash}{0d002b7be241610612472ae1588e166c}
\strng{authornamehash}{0d002b7be241610612472ae1588e166c}
\strng{authorfullhash}{f3b9bb41ad54f4d97f9ff1df2a6b4a28}
\field{sortinit}{D}
\field{sortinithash}{6f385f66841fb5e82009dc833c761848}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{A Stellite alloy mixture hardfacing consisting of 70% Stellite 3 and 30% Stellite 21, is created via laser cladding for control valve seat sealing surfaces, aiming at enhancing hardness and wear resistance compared with Stellite 6, and improving cracking in laser cladding compared with Stellite 3. The Stellite alloy mixture hardfacing is made on 316 stainless steel substrate and does not show any cracking in liquid penetrant testing. The microstructure of the hardfacing is analyzed using SEM, EDS and XRD. The hardness, dry sliding wear resistance, cavitation-erosion resistance in NaOH solution and corrosion resistance in morpholine solution at pH 9.5 to simulate the amine environment of boiler feedwater service in power generation plants, are evaluated. The Stellite 6 hardfacing prepared with the same laser process parameters is also analyzed and tested under the same conditions for comparison. The experimental results and real industrial test demonstrate superior performance of the Stellite alloy mixture hardfacing to the Stellite 6 hardfacing for control valve seat sealing application. © 2017 Elsevier B.V.}
\field{journaltitle}{Surface and Coatings Technology}
\field{note}{Cited by: 57}
\field{title}{Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces}
\field{type}{Article}
\field{volume}{329}
\field{year}{2017}
\field{pages}{97\bibrangedash 108}
\range{pages}{12}
\verb{doi}
\verb 10.1016/j.surfcoat.2017.09.018
\endverb
\keyw{Cavitation; Cavitation corrosion; Cladding (coating); Corrosion; Corrosion resistance; Cracks; Electrochemical corrosion; Erosion; Hardness; Laser cladding; Mixtures; Nondestructive examination; Safety valves; Stainless steel; Steel testing; Stellite; Wear resistance; 316 stainless steel; Cavitation erosion resistance; Dry sliding wear; Laser process parameters; Liquid-penetrant testing; Power generation plants; Sealing applications; Stellite alloy; Alloy steel}
\endentry
\entry{DUBOS2020128812}{article}{}
\name{author}{8}{}{%
{{hash=9a1119596e1b4d4b23c0a148f6be566c}{%
family={Dubos},
familyi={D\bibinitperiod},
given={Pierre-Antoine},
giveni={P\bibinithyphendelim A\bibinitperiod}}}%
{{hash=01e964477cfd75eeae5b3b943c3b962f}{%
family={Fajoui},
familyi={F\bibinitperiod},
given={Jamal},
giveni={J\bibinitperiod}}}%
{{hash=129c0ffd557e8feeb5a8b4b7b792c839}{%
family={Iskounen},
familyi={I\bibinitperiod},
given={Nadjib},
giveni={N\bibinitperiod}}}%
{{hash=a0b974802709aa401fbb4420cfeea3db}{%
family={Coret},
familyi={C\bibinitperiod},
given={Michel},
giveni={M\bibinitperiod}}}%
{{hash=3621a3c6ca2b622f5a6d10bec40d021d}{%
family={Kabra},
familyi={K\bibinitperiod},
given={Saurabh},
giveni={S\bibinitperiod}}}%
{{hash=21d695de83cb08e5fcad52c7d96928e1}{%
family={Kelleher},
familyi={K\bibinitperiod},
given={Joe},
giveni={J\bibinitperiod}}}%
{{hash=0977b957b854668cd42a1381f69ebf22}{%
family={Girault},
familyi={G\bibinitperiod},
given={Baptiste},
giveni={B\bibinitperiod}}}%
{{hash=e6d6e3c69ceda316a5670caa0b5a539f}{%
family={Gloaguen},
familyi={G\bibinitperiod},
given={David},
giveni={D\bibinitperiod}}}%
}
\strng{namehash}{19950fb5a63db6a9fd0828833b72ef30}
\strng{fullhash}{2d85e92bd28793bdc05ec4381d10cc12}
\strng{bibnamehash}{19950fb5a63db6a9fd0828833b72ef30}
\strng{authorbibnamehash}{19950fb5a63db6a9fd0828833b72ef30}
\strng{authornamehash}{19950fb5a63db6a9fd0828833b72ef30}
\strng{authorfullhash}{2d85e92bd28793bdc05ec4381d10cc12}
\field{sortinit}{D}
\field{sortinithash}{6f385f66841fb5e82009dc833c761848}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Thermal and mechanical effects on the phase transformation of polycrystalline two-phase HCP/FCC cobalt have been studied in coupled and decoupled ways. This experimental work has involved in situ X-ray and neutron diffraction analysis to determine phase proportions under various thermomechanical conditions, those which are not referenced in the litterature. A quantitative analysis is proposed to better understand phase transformation in a cobalt rolled sheet. New experimental results show that the metastable FCC retained phase can be transformed into HCP phase by a mechanical loading. In accordance with the theory and the literature, the prominent phase (HCP) can subsequently be transformed with an increase of temperature above 743 K.}
\field{issn}{0167-577X}
\field{journaltitle}{Materials Letters}
\field{title}{Temperature effect on strain-induced phase transformation of cobalt}
\field{volume}{281}
\field{year}{2020}
\field{pages}{128812}
\range{pages}{1}
\verb{doi}
\verb https://doi.org/10.1016/j.matlet.2020.128812
\endverb
\verb{urlraw}
\verb https://www.sciencedirect.com/science/article/pii/S0167577X20315196
\endverb
\verb{url}
\verb https://www.sciencedirect.com/science/article/pii/S0167577X20315196
\endverb
\keyw{Cobalt,Phase transformation,Diffraction,Mechanical behavior,characterization}
\endentry
\entry{Franc2004265}{article}{}
\name{author}{2}{}{%
{{hash=ef942b0b95388b2d9142189e3eb79cf7}{%
family={Franc},
familyi={F\bibinitperiod},
given={J.P.},
giveni={J\bibinitperiod}}}%
{{hash=7a9440fb866e343e95aa80ee3d668b90}{%
family={Michel},
familyi={M\bibinitperiod},
given={J.M.},
giveni={J\bibinitperiod}}}%
}
\strng{namehash}{6fd232567af171f93083503321a6b925}
\strng{fullhash}{6fd232567af171f93083503321a6b925}
\strng{bibnamehash}{6fd232567af171f93083503321a6b925}
\strng{authorbibnamehash}{6fd232567af171f93083503321a6b925}
\strng{authornamehash}{6fd232567af171f93083503321a6b925}
\strng{authorfullhash}{6fd232567af171f93083503321a6b925}
\field{sortinit}{F}
\field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4}
\field{labelnamesource}{author}
\field{journaltitle}{Fundamentals of Cavitation}
\field{note}{cited By 959}
\field{year}{2004}
\field{pages}{265}
\range{pages}{1}
\endentry
\entry{Frenk199481}{article}{}
\name{author}{2}{}{%
{{hash=6e61e4cc50de7f0f6f6fa42dce1a72c1}{%
family={Frenk},
familyi={F\bibinitperiod},
given={A.},
giveni={A\bibinitperiod}}}%
{{hash=38d34d9973e4cdc0ed305fca9bfc6034}{%
family={Kurz},
familyi={K\bibinitperiod},
given={W.},
giveni={W\bibinitperiod}}}%
}
\strng{namehash}{1470295c00338871700e4ccaea4e2085}
\strng{fullhash}{1470295c00338871700e4ccaea4e2085}
\strng{bibnamehash}{1470295c00338871700e4ccaea4e2085}
\strng{authorbibnamehash}{1470295c00338871700e4ccaea4e2085}
\strng{authornamehash}{1470295c00338871700e4ccaea4e2085}
\strng{authorfullhash}{1470295c00338871700e4ccaea4e2085}
\field{sortinit}{F}
\field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Wear}
\field{note}{cited By 126}
\field{number}{1-2}
\field{title}{Microstructural effects on the sliding wear resistance of a cobalt-based alloy}
\field{volume}{174}
\field{year}{1994}
\field{pages}{81\bibrangedash 91}
\range{pages}{11}
\verb{doi}
\verb 10.1016/0043-1648(94)90089-2
\endverb
\endentry
\entry{Gao2024}{article}{}
\name{author}{3}{}{%
{{hash=ddd762e6a81e0cea53e6abb0ae3c6c4d}{%
family={Gao},
familyi={G\bibinitperiod},
given={Guiyan},
giveni={G\bibinitperiod}}}%
{{hash=df2adc553a4ff58eab8725cbeaf0a23b}{%
family={Guo},
familyi={G\bibinitperiod},
given={Shusheng},
giveni={S\bibinitperiod}}}%
{{hash=a402f14d4bb819a6d34c249184b62363}{%
family={Li},
familyi={L\bibinitperiod},
given={Derui},
giveni={D\bibinitperiod}}}%
}
\strng{namehash}{dfa012fcd5b8cfd07c1578825ac79235}
\strng{fullhash}{dfa012fcd5b8cfd07c1578825ac79235}
\strng{bibnamehash}{dfa012fcd5b8cfd07c1578825ac79235}
\strng{authorbibnamehash}{dfa012fcd5b8cfd07c1578825ac79235}
\strng{authornamehash}{dfa012fcd5b8cfd07c1578825ac79235}
\strng{authorfullhash}{dfa012fcd5b8cfd07c1578825ac79235}
\field{sortinit}{G}
\field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Materials}
\field{note}{Cited by: 0}
\field{number}{5}
\field{title}{A Review of Cavitation Erosion on Pumps and Valves in Nuclear Power Plants}
\field{type}{Review}
\field{volume}{17}
\field{year}{2024}
\verb{doi}
\verb 10.3390/ma17051007
\endverb
\endentry
\entry{GEVARI2020115065}{article}{}
\name{author}{5}{}{%
{{hash=93d9cff817608f96c206941face4c5d7}{%
family={Gevari},
familyi={G\bibinitperiod},
given={Moein\bibnamedelima Talebian},
giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod}}}%
{{hash=e271948379fd6fee4bd30a4d576761b8}{%
family={Abbasiasl},
familyi={A\bibinitperiod},
given={Taher},
giveni={T\bibinitperiod}}}%
{{hash=67d0558f57dbf7548b5b43a80b85f47f}{%
family={Niazi},
familyi={N\bibinitperiod},
given={Soroush},
giveni={S\bibinitperiod}}}%
{{hash=efb87c095e41c6349ba97d939982e130}{%
family={Ghorbani},
familyi={G\bibinitperiod},
given={Morteza},
giveni={M\bibinitperiod}}}%
{{hash=311cf929c32c6c2ce5aa2728ae09ad47}{%
family={Koşar},
familyi={K\bibinitperiod},
given={Ali},
giveni={A\bibinitperiod}}}%
}
\strng{namehash}{76843143b68c90c6ac5d9d854fd56c1f}
\strng{fullhash}{7e654139b427bf36f3a25a5848105f5b}
\strng{bibnamehash}{76843143b68c90c6ac5d9d854fd56c1f}
\strng{authorbibnamehash}{76843143b68c90c6ac5d9d854fd56c1f}
\strng{authornamehash}{76843143b68c90c6ac5d9d854fd56c1f}
\strng{authorfullhash}{7e654139b427bf36f3a25a5848105f5b}
\field{sortinit}{G}
\field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{The phase change phenomenon in fluids as a result of low local pressure under a critical value is known as cavitation. Acoustic wave propagation or hydrodynamic pressure drop of the working fluid are the main reasons for inception of this phenomenon. Considering the released energy from the collapsing cavitation bubbles as a reliable source has led to its implementation to different fields, namely, heat transfer, surface cleaning and fouling, water treatment, food industry, chemical reactions, energy harvesting. A considerable amount of energy in the mentioned industries is required for thermal applications. Cavitation could serve for minimizing the energy demand and optimizing the processes. Thus, the energy efficiency of the systems could be significantly enhanced. This review article focuses on the direct and indirect thermal applications of hydrodynamic and acoustic cavitation. Relevant studies with emerging applications are discussed, while developments in cavitation, which have given rise to thermal applications during the last decade, are also included in this review.}
\field{issn}{1359-4311}
\field{journaltitle}{Applied Thermal Engineering}
\field{title}{Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: A review}
\field{volume}{171}
\field{year}{2020}
\field{pages}{115065}
\range{pages}{1}
\verb{doi}
\verb https://doi.org/10.1016/j.applthermaleng.2020.115065
\endverb
\keyw{Hydrodynamic cavitation,Acoustic cavitation,Heat transfer enhancement,Water treatment,Food industry}
\endentry
\entry{HUANG2023106170}{article}{}
\name{author}{6}{}{%
{{hash=55328195d8b2c0f90f11e12f5ddb7d65}{%
family={Huang},
familyi={H\bibinitperiod},
given={Zonglian},
giveni={Z\bibinitperiod}}}%
{{hash=2938deb5048323c6e1bfdd80975d5b28}{%
family={Wang},
familyi={W\bibinitperiod},
given={Bo},
giveni={B\bibinitperiod}}}%
{{hash=0138deaf332692ced30d823b9cebc488}{%
family={Liu},
familyi={L\bibinitperiod},
given={Fei},
giveni={F\bibinitperiod}}}%
{{hash=92c4cc87ddf9f0a5abb5ff8d5b8878d4}{%
family={Song},
familyi={S\bibinitperiod},
given={Min},
giveni={M\bibinitperiod}}}%
{{hash=971be18e8809118d44c885580820c916}{%
family={Ni},
familyi={N\bibinitperiod},
given={Song},
giveni={S\bibinitperiod}}}%
{{hash=eb96d2754cddae273dd482f087734e31}{%
family={Liu},
familyi={L\bibinitperiod},
given={Shaojun},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{61779e4ce456f415f5dc118db21bed83}
\strng{fullhash}{8ca9ebea09cf1f645c339306001d45ac}
\strng{bibnamehash}{61779e4ce456f415f5dc118db21bed83}
\strng{authorbibnamehash}{61779e4ce456f415f5dc118db21bed83}
\strng{authornamehash}{61779e4ce456f415f5dc118db21bed83}
\strng{authorfullhash}{8ca9ebea09cf1f645c339306001d45ac}
\field{sortinit}{H}
\field{sortinithash}{23a3aa7c24e56cfa16945d55545109b5}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{The influence of laser energy density and heat treatment on the microstructure and properties of Co-Cr-Mo-W alloys fabricated by selective laser melting (SLM) are investigated symmetrically. When the laser power, the scanning speed, and the scanning space are set as 160 W, 400 mm/s, and 0.07 mm, respectively, the SLM-ed Co-Cr-Mo-W alloys display high strength and good ductility simultaneously. The precipitates ranging from nano- to macro- scale are finely distributed in SLM-ed CoCr alloys grains and/or along the grain boundaries in the heat treated alloys. Co-Cr-Mo-W alloys with an excellent combination of strength and ductility can be achieved by tailoring the microstructure and morphology of SLM-ed alloys during the heat treatment. The tensile strength, yield strength, and elongation are 1221.38 ± 10 MPa, 778.81 ± 12 MPa, and 17.2 ± 0.67\%, respectively.}
\field{issn}{0263-4368}
\field{journaltitle}{International Journal of Refractory Metals and Hard Materials}
\field{title}{Microstructure evolution, martensite transformation and mechanical properties of heat treated Co-Cr-Mo-W alloys by selective laser melting}
\field{volume}{113}
\field{year}{2023}
\field{pages}{106170}
\range{pages}{1}
\verb{doi}
\verb https://doi.org/10.1016/j.ijrmhm.2023.106170
\endverb
\verb{urlraw}
\verb https://www.sciencedirect.com/science/article/pii/S0263436823000707
\endverb
\verb{url}
\verb https://www.sciencedirect.com/science/article/pii/S0263436823000707
\endverb
\keyw{CoCrMo-W alloys,Selective laser melting,Heat treatment,Martensite phase transformation,Mechanical properties}
\endentry
\entry{Kim200685}{article}{}
\name{author}{5}{}{%
{{hash=4ac20ce0bb07901a22f4dc32ae528eee}{%
family={Kim},
familyi={K\bibinitperiod},
given={Ji\bibnamedelima Hui},
giveni={J\bibinitperiod\bibinitdelim H\bibinitperiod}}}%
{{hash=1c0f556175387987a33ffbe351d2b5f7}{%
family={Na},
familyi={N\bibinitperiod},
given={Kwang\bibnamedelima Su},
giveni={K\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
{{hash=ef8ca56a9fe15a8661b77ba0ccbb33e1}{%
family={Kim},
familyi={K\bibinitperiod},
given={Gyung\bibnamedelima Guk},
giveni={G\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
{{hash=40e6ce3aea7cc874ac4de783dfab617b}{%
family={Yoon},
familyi={Y\bibinitperiod},
given={Chong\bibnamedelima S.},
giveni={C\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
{{hash=2a28c8d002e1319c5eb2392961d9e5e8}{%
family={Kim},
familyi={K\bibinitperiod},
given={Seon\bibnamedelima Jin},
giveni={S\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
}
\strng{namehash}{4d68dd5c0efbe03de230d6cd69424f58}
\strng{fullhash}{196c9a752c1a6b1b1b78ec342a7ad915}
\strng{bibnamehash}{4d68dd5c0efbe03de230d6cd69424f58}
\strng{authorbibnamehash}{4d68dd5c0efbe03de230d6cd69424f58}
\strng{authornamehash}{4d68dd5c0efbe03de230d6cd69424f58}
\strng{authorfullhash}{196c9a752c1a6b1b1b78ec342a7ad915}
\field{sortinit}{K}
\field{sortinithash}{c02bf6bff1c488450c352b40f5d853ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Journal of Nuclear Materials}
\field{note}{Cited by: 15}
\field{number}{1-3}
\field{title}{Effect of manganese on the cavitation erosion resistance of iron-chromium-carbon-silicon alloys for replacing cobalt-base Stellite}
\field{type}{Article}
\field{volume}{352}
\field{year}{2006}
\field{pages}{85\bibrangedash 89}
\range{pages}{5}
\verb{doi}
\verb 10.1016/j.jnucmat.2006.02.072
\endverb
\endentry
\entry{Kumar2024}{article}{}
\name{author}{3}{}{%
{{hash=7a01333f7a8882a1544ea42b848a85a9}{%
family={Kumar},
familyi={K\bibinitperiod},
given={Prashant},
giveni={P\bibinitperiod}}}%
{{hash=0a94fe7bbcf1e5a7774d7916408006e8}{%
family={Singal},
familyi={S\bibinitperiod},
given={S.K.},
giveni={S\bibinitperiod}}}%
{{hash=9872c57732b846418f7606933c5882a4}{%
family={Gohil},
familyi={G\bibinitperiod},
given={Pankaj\bibnamedelima P.},
giveni={P\bibinitperiod\bibinitdelim P\bibinitperiod}}}%
}
\strng{namehash}{3209996662b43deceed025d2ab70f7f3}
\strng{fullhash}{3209996662b43deceed025d2ab70f7f3}
\strng{bibnamehash}{3209996662b43deceed025d2ab70f7f3}
\strng{authorbibnamehash}{3209996662b43deceed025d2ab70f7f3}
\strng{authornamehash}{3209996662b43deceed025d2ab70f7f3}
\strng{authorfullhash}{3209996662b43deceed025d2ab70f7f3}
\field{sortinit}{K}
\field{sortinithash}{c02bf6bff1c488450c352b40f5d853ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Renewable and Sustainable Energy Reviews}
\field{note}{Cited by: 0}
\field{title}{A technical review on combined effect of cavitation and silt erosion on Francis turbine}
\field{type}{Review}
\field{volume}{190}
\field{year}{2024}
\verb{doi}
\verb 10.1016/j.rser.2023.114096
\endverb
\endentry
\entry{LIU2022294}{incollection}{}
\name{author}{3}{}{%
{{hash=5d07f51a51d9c2c1363bab089c022727}{%
family={Liu},
familyi={L\bibinitperiod},
given={Lin},
giveni={L\bibinitperiod}}}%
{{hash=c085572f860d99d03a37c331ee13ff68}{%
family={Zhang},
familyi={Z\bibinitperiod},
given={Jun},
giveni={J\bibinitperiod}}}%
{{hash=f1c10f217320cbd95d327e5e670fd288}{%
family={Ai},
familyi={A\bibinitperiod},
given={Cheng},
giveni={C\bibinitperiod}}}%
}
\name{editor}{1}{}{%
{{hash=513d1413715776326b75a279890066b6}{%
family={Caballero},
familyi={C\bibinitperiod},
given={Francisca\bibnamedelima G.},
giveni={F\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
}
\list{location}{1}{%
{Oxford}%
}
\list{publisher}{1}{%
{Elsevier}%
}
\strng{namehash}{040a244d6e815ecc78840d5ef9f1f4ec}
\strng{fullhash}{040a244d6e815ecc78840d5ef9f1f4ec}
\strng{bibnamehash}{040a244d6e815ecc78840d5ef9f1f4ec}
\strng{authorbibnamehash}{040a244d6e815ecc78840d5ef9f1f4ec}
\strng{authornamehash}{040a244d6e815ecc78840d5ef9f1f4ec}
\strng{authorfullhash}{040a244d6e815ecc78840d5ef9f1f4ec}
\strng{editorbibnamehash}{513d1413715776326b75a279890066b6}
\strng{editornamehash}{513d1413715776326b75a279890066b6}
\strng{editorfullhash}{513d1413715776326b75a279890066b6}
\field{sortinit}{L}
\field{sortinithash}{7c47d417cecb1f4bd38d1825c427a61a}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{For over eight decades now, superalloys have provided the most reliable and cost-effective means to meet the operation requirement of high temperature and stress for aeroengine and industrial gas turbine. Nickel-based superalloys achieve the highest temperature and stress combination performance among all kinds of superalloys, making them ideal for the most demanding applications, such as critical component of turbine disk and blade. This article presents an overview on nickel-based superalloys and summarizes their current research and application. The topics cover composition, phases and microstructures, metallurgical principles of various strengthening, processing methods including melting, casting, forging, heat treating, powder metallurgy and thermal barrier coating. It also describes the principles and processes of component production with different metallurgical methods, including an upcoming technology of additive manufacturing. The development trends of nickel-based superalloys and some potential alternative metallic materials with higher temperature capacity beyond nickel-based superalloys are prospected.}
\field{booktitle}{Encyclopedia of Materials: Metals and Alloys}
\field{isbn}{978-0-12-819733-2}
\field{title}{Nickel-Based Superalloys}
\field{year}{2022}
\field{pages}{294\bibrangedash 304}
\range{pages}{11}
\verb{doi}
\verb https://doi.org/10.1016/B978-0-12-803581-8.12093-4
\endverb
\verb{urlraw}
\verb https://www.sciencedirect.com/science/article/pii/B9780128035818120934
\endverb
\verb{url}
\verb https://www.sciencedirect.com/science/article/pii/B9780128035818120934
\endverb
\keyw{Additive manufacturing,Aero-engine,Composition,Directional solidification,Heat treating,Industrial gas turbine,Investment casting,Mechanical property,Microstructure,Nickel-based superalloy,Powder metallurgy,Single crystal,Strengthening mechanism,Thermal barrier coatings,Vacuum induction melting}
\endentry
\entry{McIntyre1979105}{article}{}
\name{author}{3}{}{%
{{hash=df2bb06cbe95e9faaa65206f72765216}{%
family={McIntyre},
familyi={M\bibinitperiod},
given={N.S.},
giveni={N\bibinitperiod}}}%
{{hash=fc9097282acc465dc58d590fcf3d4b96}{%
family={Zetaruk},
familyi={Z\bibinitperiod},
given={D.},
giveni={D\bibinitperiod}}}%
{{hash=8bd8e44b953aeb5c525be802ec5059ca}{%
family={Murphy},
familyi={M\bibinitperiod},
given={E.V.},
giveni={E\bibinitperiod}}}%
}
\strng{namehash}{7ec7642f1ad7533a0152b1301c3bdb83}
\strng{fullhash}{7ec7642f1ad7533a0152b1301c3bdb83}
\strng{bibnamehash}{7ec7642f1ad7533a0152b1301c3bdb83}
\strng{authorbibnamehash}{7ec7642f1ad7533a0152b1301c3bdb83}
\strng{authornamehash}{7ec7642f1ad7533a0152b1301c3bdb83}
\strng{authorfullhash}{7ec7642f1ad7533a0152b1301c3bdb83}
\field{sortinit}{M}
\field{sortinithash}{4625c616857f13d17ce56f7d4f97d451}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Surface and Interface Analysis}
\field{note}{Cited by: 28}
\field{number}{4}
\field{title}{XRay photoelectron spectroscopic study of the aqueous oxidation of stellite6 alloy}
\field{type}{Article}
\field{volume}{1}
\field{year}{1979}
\field{pages}{105\bibrangedash 110}
\range{pages}{6}
\verb{doi}
\verb 10.1002/sia.740010402
\endverb
\endentry
\entry{Mokrane2019}{article}{}
\name{author}{2}{}{%
{{hash=2259be8a6f9e7f37efa94cadfb296e93}{%
family={Mokrane},
familyi={M\bibinitperiod},
given={Wahiba},
giveni={W\bibinitperiod}}}%
{{hash=ecd586dd3ab122088a1fae69818941f3}{%
family={Kettab},
familyi={K\bibinitperiod},
given={Ahmed},
giveni={A\bibinitperiod}}}%
}
\strng{namehash}{fc73b31e94083237655041c12169255f}
\strng{fullhash}{fc73b31e94083237655041c12169255f}
\strng{bibnamehash}{fc73b31e94083237655041c12169255f}
\strng{authorbibnamehash}{fc73b31e94083237655041c12169255f}
\strng{authornamehash}{fc73b31e94083237655041c12169255f}
\strng{authorfullhash}{fc73b31e94083237655041c12169255f}
\field{sortinit}{M}
\field{sortinithash}{4625c616857f13d17ce56f7d4f97d451}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Euro-Mediterranean Journal for Environmental Integration}
\field{note}{Cited by: 3}
\field{number}{1}
\field{title}{Flow behaviour analysis through a venturi designed for industrial and environmental processes}
\field{type}{Article}
\field{volume}{4}
\field{year}{2019}
\verb{doi}
\verb 10.1007/s41207-018-0093-6
\endverb
\endentry
\entry{Rajan19821161}{article}{}
\name{author}{1}{}{%
{{hash=961abc432a13e38ccb10e3f37f79ab41}{%
family={Rajan},
familyi={R\bibinitperiod},
given={Krishna},
giveni={K\bibinitperiod}}}%
}
\strng{namehash}{961abc432a13e38ccb10e3f37f79ab41}
\strng{fullhash}{961abc432a13e38ccb10e3f37f79ab41}
\strng{bibnamehash}{961abc432a13e38ccb10e3f37f79ab41}
\strng{authorbibnamehash}{961abc432a13e38ccb10e3f37f79ab41}
\strng{authornamehash}{961abc432a13e38ccb10e3f37f79ab41}
\strng{authorfullhash}{961abc432a13e38ccb10e3f37f79ab41}
\field{sortinit}{R}
\field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{The effect of heat treatment on microstructure has been studied in a Co-Cr-Mo-C alloy using transmission electron microscopy. Isothermal aging treatments at 750 °C were found to promote a two stage fcc → hcp transformation, coincident with a discontinuous precipitation of M 23C 6 carbides. The variation in morphology of the carbides associated with the fcc → hcp transition is discussed in terms of the nature of the fcc/hcp interface. © 1982 American Society for Metals and The Metallurgical Society of AIME.}
\field{journaltitle}{Metallurgical Transactions A}
\field{note}{Cited by: 79}
\field{number}{7}
\field{title}{Phase transformations in a wrought Co-Cr-Mo-C alloy}
\field{type}{Article}
\field{volume}{13}
\field{year}{1982}
\field{pages}{1161\bibrangedash 1166}
\range{pages}{6}
\verb{doi}
\verb 10.1007/BF02645497
\endverb
\keyw{COBALT METALLOGRAPHY - Transformations; COBALT CHROMIUM MOLYBDENUM ALLOYS}
\endentry
\entry{Romo201216}{article}{}
\name{author}{4}{}{%
{{hash=abd07783347fdc165942b01479e16afb}{%
family={Romo},
familyi={R\bibinitperiod},
given={S.A.},
giveni={S\bibinitperiod}}}%
{{hash=9c9837ed5fce5c7a1aeb233aa99aa04d}{%
family={Santa},
familyi={S\bibinitperiod},
given={J.F.},
giveni={J\bibinitperiod}}}%
{{hash=fecaae68172b53756247ca68af700ed9}{%
family={Giraldo},
familyi={G\bibinitperiod},
given={J.E.},
giveni={J\bibinitperiod}}}%
{{hash=467faf266d1206e4566fe6d0465b33f0}{%
family={Toro},
familyi={T\bibinitperiod},
given={A.},
giveni={A\bibinitperiod}}}%
}
\strng{namehash}{285bcf9d2b83436d537b5e21b7fde046}
\strng{fullhash}{e0312588d226589c879f5d182ca350e9}
\strng{bibnamehash}{285bcf9d2b83436d537b5e21b7fde046}
\strng{authorbibnamehash}{285bcf9d2b83436d537b5e21b7fde046}
\strng{authornamehash}{285bcf9d2b83436d537b5e21b7fde046}
\strng{authorfullhash}{e0312588d226589c879f5d182ca350e9}
\field{sortinit}{R}
\field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Tribology International}
\field{note}{Cited by: 67}
\field{title}{Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy}
\field{type}{Article}
\field{volume}{47}
\field{year}{2012}
\field{pages}{16\bibrangedash 24}
\range{pages}{9}
\verb{doi}
\verb 10.1016/j.triboint.2011.10.003
\endverb
\endentry
\entry{Shin2003117}{article}{}
\name{author}{5}{}{%
{{hash=3415cba32eb492c2f823c25157ef7589}{%
family={Shin},
familyi={S\bibinitperiod},
given={J.-C.},
giveni={J\bibinithyphendelim C\bibinitperiod}}}%
{{hash=61cf36d9da8025aa006db6343e275482}{%
family={Doh},
familyi={D\bibinitperiod},
given={J.-M.},
giveni={J\bibinithyphendelim M\bibinitperiod}}}%
{{hash=b754d705360ba879fb57dd58f379c353}{%
family={Yoon},
familyi={Y\bibinitperiod},
given={J.-K.},
giveni={J\bibinithyphendelim K\bibinitperiod}}}%
{{hash=72f2735083ef1646e3d14f45d3987f16}{%
family={Lee},
familyi={L\bibinitperiod},
given={D.-Y.},
giveni={D\bibinithyphendelim Y\bibinitperiod}}}%
{{hash=403455eb0986d19921f6d8fbefaed203}{%
family={Kim},
familyi={K\bibinitperiod},
given={J.-S.},
giveni={J\bibinithyphendelim S\bibinitperiod}}}%
}
\strng{namehash}{d10b0db504b271ad585df7137ac0b592}
\strng{fullhash}{4aed67b17d1aee3c2e164efea2d4f056}
\strng{bibnamehash}{d10b0db504b271ad585df7137ac0b592}
\strng{authorbibnamehash}{d10b0db504b271ad585df7137ac0b592}
\strng{authornamehash}{d10b0db504b271ad585df7137ac0b592}
\strng{authorfullhash}{4aed67b17d1aee3c2e164efea2d4f056}
\field{sortinit}{S}
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Surface and Coatings Technology}
\field{note}{cited By 181}
\field{number}{2-3}
\field{title}{Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys}
\field{volume}{166}
\field{year}{2003}
\field{pages}{117\bibrangedash 126}
\range{pages}{10}
\verb{doi}
\verb 10.1016/S0257-8972(02)00853-8
\endverb
\endentry
\entry{Song1997291}{article}{}
\name{author}{2}{}{%
{{hash=98a0eae8959995fdf8080e7c18275cb4}{%
family={Song},
familyi={S\bibinitperiod},
given={J.-H.},
giveni={J\bibinithyphendelim H\bibinitperiod}}}%
{{hash=fca1c5f63ea68c1fb43183293b86627f}{%
family={Kim},
familyi={K\bibinitperiod},
given={H.-J.},
giveni={H\bibinithyphendelim J\bibinitperiod}}}%
}
\strng{namehash}{621cbbc11dc2877c9b778c78a09d1451}
\strng{fullhash}{621cbbc11dc2877c9b778c78a09d1451}
\strng{bibnamehash}{621cbbc11dc2877c9b778c78a09d1451}
\strng{authorbibnamehash}{621cbbc11dc2877c9b778c78a09d1451}
\strng{authornamehash}{621cbbc11dc2877c9b778c78a09d1451}
\strng{authorfullhash}{621cbbc11dc2877c9b778c78a09d1451}
\field{sortinit}{S}
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Wear}
\field{note}{cited By 30}
\field{number}{1-2}
\field{title}{Sliding wear performance of cobalt-based alloys in molten-Al-added zinc bath}
\field{volume}{210}
\field{year}{1997}
\field{pages}{291\bibrangedash 298}
\range{pages}{8}
\verb{doi}
\verb 10.1016/S0043-1648(97)00092-6
\endverb
\endentry
\entry{Song2019}{article}{}
\name{author}{4}{}{%
{{hash=9c2434e61665c7986ceb405a3bca9230}{%
family={Song},
familyi={S\bibinitperiod},
given={Moo-Keun},
giveni={M\bibinithyphendelim K\bibinitperiod}}}%
{{hash=a68bc48761feffdd02d0f66c07413968}{%
family={Park},
familyi={P\bibinitperiod},
given={Su-Han},
giveni={S\bibinithyphendelim H\bibinitperiod}}}%
{{hash=3bd56a4b04b85d22e68d7fccec646a9e}{%
family={Lee},
familyi={L\bibinitperiod},
given={Su-Jin},
giveni={S\bibinithyphendelim J\bibinitperiod}}}%
{{hash=b1f122a8cf9ad2750fd7b5466a0dafd2}{%
family={Kim},
familyi={K\bibinitperiod},
given={Jong-Do},
giveni={J\bibinithyphendelim D\bibinitperiod}}}%
}
\strng{namehash}{0bdd9d4fea843ecf3526615b0e369773}
\strng{fullhash}{5ef23c8c15a7ad7b560cefee4f5a3bd8}
\strng{bibnamehash}{0bdd9d4fea843ecf3526615b0e369773}
\strng{authorbibnamehash}{0bdd9d4fea843ecf3526615b0e369773}
\strng{authornamehash}{0bdd9d4fea843ecf3526615b0e369773}
\strng{authorfullhash}{5ef23c8c15a7ad7b560cefee4f5a3bd8}
\field{sortinit}{S}
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{In this study, experiments with various parameters were performed to apply laser cladding to the exhaust valve face of a marine engine and optimum conditions were derived. The used specimen was an actual exhaust valve, and the heat source was a high-power diode laser. Cladding was applied to the exhaust valve face using the optimum conditions, and a sound clad layer without internal defects, such as pores and cracks, was formed. The average hardness of the clad layer formed under the optimum conditions was higher than 529 Hv. Component analysis showed a very low dilution rate inside the clad layer. © 2019 World Scientific Publishing Company.}
\field{journaltitle}{Modern Physics Letters B}
\field{note}{Cited by: 4}
\field{number}{14-15}
\field{title}{Study on optimization of laser cladding using Stellite 6 powder for exhaust valve face of marine engine}
\field{type}{Conference paper}
\field{volume}{33}
\field{year}{2019}
\verb{doi}
\verb 10.1142/S0217984919400372
\endverb
\endentry
\entry{Sotoodeh2023929}{article}{}
\name{author}{1}{}{%
{{hash=9de0e1af6a344f394010a6e9e35b41fe}{%
family={Sotoodeh},
familyi={S\bibinitperiod},
given={Karan},
giveni={K\bibinitperiod}}}%
}
\strng{namehash}{9de0e1af6a344f394010a6e9e35b41fe}
\strng{fullhash}{9de0e1af6a344f394010a6e9e35b41fe}
\strng{bibnamehash}{9de0e1af6a344f394010a6e9e35b41fe}
\strng{authorbibnamehash}{9de0e1af6a344f394010a6e9e35b41fe}
\strng{authornamehash}{9de0e1af6a344f394010a6e9e35b41fe}
\strng{authorfullhash}{9de0e1af6a344f394010a6e9e35b41fe}
\field{sortinit}{S}
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Stellite is a cobalt-chromium alloy that is widely used for hard facing of the industrial valves internal components, including the seat and closure member, to prevent erosion and cavitation. Although previous studies have emphasized using stellite to avoid erosion and wearing of substrates, most of them do not focus on applying this material for the valve industry in oil and gas projects. Thus, the present study mainly aims to provide a method to qualify the stellite 6 hardfacing applied on the low-temperature carbon steel (LTCS) valve body contact surface with disks and ensure that the weld overlay is used correctly. This study has developed a weld overlay qualification method including various tests such as Non-destructive test (NDT), Charpy V-Notch test, chemical composition, hardness test, and finally micro examination. The results of the trials and interpretation and evaluation are also included in this research. © 2022, The Society for Experimental Mechanics, Inc.}
\field{journaltitle}{Experimental Techniques}
\field{note}{Cited by: 1}
\field{number}{4}
\field{title}{Stellite Weld Overlay Qualification on the Body of a Dual Plate Check Valve in Low-Temperature Carbon Steel in the Offshore Oil and Gas Industry}
\field{type}{Article}
\field{volume}{47}
\field{year}{2023}
\field{pages}{929\bibrangedash 938}
\range{pages}{10}
\verb{doi}
\verb 10.1007/s40799-022-00594-1
\endverb
\keyw{Chromium alloys; Cobalt alloys; Eddy current testing; Inert gases; Offshore oil well production; Temperature; Welds; Facing alloys; Hard facing alloy procedure qualification record; Lows-temperatures; Shielding gas; Stellite 6; Stellite 6 and 21; Tungsten inert gas; Weld overlay; Welding technique; Erosion}
\endentry
\entry{Tawancy1986337}{article}{}
\name{author}{3}{}{%
{{hash=f3547527506994c69c774b2c0d77ac73}{%
family={Tawancy},
familyi={T\bibinitperiod},
given={H.M.},
giveni={H\bibinitperiod}}}%
{{hash=f7d566a34064f3d0ccab33dde7a34069}{%
family={Ishwar},
familyi={I\bibinitperiod},
given={V.R.},
giveni={V\bibinitperiod}}}%
{{hash=6f964da88776c95344b60d3d9b6241fa}{%
family={Lewis},
familyi={L\bibinitperiod},
given={B.E.},
giveni={B\bibinitperiod}}}%
}
\strng{namehash}{b41586e8f4d7f9d36d48a78941a8c3b5}
\strng{fullhash}{b41586e8f4d7f9d36d48a78941a8c3b5}
\strng{bibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5}
\strng{authorbibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5}
\strng{authornamehash}{b41586e8f4d7f9d36d48a78941a8c3b5}
\strng{authorfullhash}{b41586e8f4d7f9d36d48a78941a8c3b5}
\field{sortinit}{T}
\field{sortinithash}{9af77f0292593c26bde9a56e688eaee9}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Journal of Materials Science Letters}
\field{note}{Cited by: 40}
\field{number}{3}
\field{title}{On the fcc → hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25)}
\field{type}{Article}
\field{volume}{5}
\field{year}{1986}
\field{pages}{337\bibrangedash 341}
\range{pages}{5}
\verb{doi}
\verb 10.1007/BF01748098
\endverb
\keyw{COBALT METALLOGRAPHY - Transformations; CRYSTALS - Structure; COBALT-BASE SUPERALLOY; HAYNES ALLOY; MULTIPHASE ALLOYS; SUPERALLOYS}
\endentry
\entry{Teles2024}{article}{}
\name{author}{5}{}{%
{{hash=50be1ef36128c86d7bc8b9a64683eef7}{%
family={Teles},
familyi={T\bibinitperiod},
given={Diógenes\bibnamedelima Barbosa},
giveni={D\bibinitperiod\bibinitdelim B\bibinitperiod}}}%
{{hash=34acc4c07cf6a7bcd8fb6b1321020e48}{%
family={Velho\bibnamedelimb de\bibnamedelima Castro},
familyi={V\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim C\bibinitperiod},
given={Victor},
giveni={V\bibinitperiod}}}%
{{hash=3449a7e15a4f7d42dae92deab55fc3c8}{%
family={Tagliari},
familyi={T\bibinitperiod},
given={Mariana\bibnamedelimb dos\bibnamedelima Reis},
giveni={M\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim R\bibinitperiod}}}%
{{hash=305e99ca0f8ea2c5bccc6d70389eb9ef}{%
family={João\bibnamedelimb de\bibnamedelima Souza},
familyi={J\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim S\bibinitperiod},
given={André},
giveni={A\bibinitperiod}}}%
{{hash=90481a667d9fac9ee9e0d14bf9da53cd}{%
family={Fraga\bibnamedelima Malfatti},
familyi={F\bibinitperiod\bibinitdelim M\bibinitperiod},
given={Célia},
giveni={C\bibinitperiod},
prefix={de},
prefixi={d\bibinitperiod}}}%
}
\strng{namehash}{28d6cccb3f060ec6ffe9dabc4cc6144c}
\strng{fullhash}{8d820c4454d7fa466b04e7612018df27}
\strng{bibnamehash}{28d6cccb3f060ec6ffe9dabc4cc6144c}
\strng{authorbibnamehash}{28d6cccb3f060ec6ffe9dabc4cc6144c}
\strng{authornamehash}{28d6cccb3f060ec6ffe9dabc4cc6144c}
\strng{authorfullhash}{8d820c4454d7fa466b04e7612018df27}
\field{sortinit}{T}
\field{sortinithash}{9af77f0292593c26bde9a56e688eaee9}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Gate valve is one of the most common design concepts in onshore Oil & Gas installations. This equipment is composed of a wedge-shaped obturator that performs linear sliding movements during activation. Fluid sealing is achieved through metallic contact between the surfaces of the gate and seat components. Metal surfaces are commonly hardened by heat treatment or coated with Stellite 6 alloy by plasma-transferred arc welding (PTAW). The application of high-velocity oxygen fuel (HVOF) coatings on these surfaces for wedge-gate valves has not yet been foreseen. In addition, comparative studies on the tribological performance of technical surfaces used in onshore wedge-gate valves are also scarce. Therefore, this study presents the results of tests performed on specimens using a ball-on-flat tribometer with linear reciprocating sliding, simulating a gate valve tribosystem in operation: flat (gate) and ball (seat). Martensitic stainless steel 13Cr was used with the contact interfaces under the following conditions: (A) heat treated, (B) Stellite 6 coating by PTAW, (C) Stellite 6 coating by HVOF, and (D) tungsten carbide coating by HVOF. The flat/ball tribological pairs investigated were A/B (TRIM 8), B/B (TRIM 5), C/B, and D/B. The coefficient of friction (COF), surface wear, and wear mechanisms were comparatively evaluated. The results showed that the newly proposed surfaces (C and D) are promising alternatives to reduce material consumption and improve the performance of valves in operation according to the application requirements. © 2024 Elsevier B.V.}
\field{journaltitle}{Wear}
\field{note}{Cited by: 0}
\field{title}{Effect of HVOF spray coating on the tribological surface of onshore gate valves}
\field{type}{Article}
\field{volume}{546-547}
\field{year}{2024}
\verb{doi}
\verb 10.1016/j.wear.2024.205322
\endverb
\keyw{Hard facing; HVOF thermal spraying; Plasma welding; Sprayed coatings; Tribology; Tungsten carbide; Wear of materials; Ball on flats; Ball-on-flat tribometer; Gate valve; Gate valve surface; High velocity oxygen fuel coatings; High velocity oxygen fuels; Metallic seal; Metallics; Tribological properties; Tribometers; Friction}
\endentry
\entry{Usta2023}{article}{}
\name{author}{3}{}{%
{{hash=a770e300d6b574ef59fd150a1dcfbf05}{%
family={Usta},
familyi={U\bibinitperiod},
given={Onur},
giveni={O\bibinitperiod}}}%
{{hash=ebe36ee278045dcf8ce0251626efbf06}{%
family={Köksal},
familyi={K\bibinitperiod},
given={Çağatay\bibnamedelima Sabri},
giveni={Ç\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
{{hash=cf2d701845d6d4d15cf633bbfa2be00c}{%
family={Korkut},
familyi={K\bibinitperiod},
given={Emin},
giveni={E\bibinitperiod}}}%
}
\strng{namehash}{c354ac215672220fee18816fe6c5779e}
\strng{fullhash}{c354ac215672220fee18816fe6c5779e}
\strng{bibnamehash}{c354ac215672220fee18816fe6c5779e}
\strng{authorbibnamehash}{c354ac215672220fee18816fe6c5779e}
\strng{authornamehash}{c354ac215672220fee18816fe6c5779e}
\strng{authorfullhash}{c354ac215672220fee18816fe6c5779e}
\field{sortinit}{U}
\field{sortinithash}{6901a00e45705986ee5e7ca9fd39adca}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Ocean Engineering}
\field{note}{Cited by: 4}
\field{title}{A systematic study into the cavitation erosion test for marine propeller materials by cavitating jet technique}
\field{type}{Article}
\field{volume}{284}
\field{year}{2023}
\verb{doi}
\verb 10.1016/j.oceaneng.2023.115252
\endverb
\endentry
\entry{Vacchieri20171100}{article}{}
\name{author}{4}{}{%
{{hash=822e5c985f1aaa9baa2fb4cf54d06568}{%
family={Vacchieri},
familyi={V\bibinitperiod},
given={E.},
giveni={E\bibinitperiod}}}%
{{hash=e6a4feb14dc6dfa34fb925388375e20a}{%
family={Costa},
familyi={C\bibinitperiod},
given={A.},
giveni={A\bibinitperiod}}}%
{{hash=0ab43c46409a6aa8599edc413ffa90c9}{%
family={Roncallo},
familyi={R\bibinitperiod},
given={G.},
giveni={G\bibinitperiod}}}%
{{hash=fc73c3c3913f252c904aa7bc7d3e38b4}{%
family={Cacciamani},
familyi={C\bibinitperiod},
given={G.},
giveni={G\bibinitperiod}}}%
}
\strng{namehash}{94de1693a8515fc1c10e3eeb80b1d244}
\strng{fullhash}{9ba416ce301f4d3d91970308ce023111}
\strng{bibnamehash}{94de1693a8515fc1c10e3eeb80b1d244}
\strng{authorbibnamehash}{94de1693a8515fc1c10e3eeb80b1d244}
\strng{authornamehash}{94de1693a8515fc1c10e3eeb80b1d244}
\strng{authorfullhash}{9ba416ce301f4d3d91970308ce023111}
\field{sortinit}{V}
\field{sortinithash}{afb52128e5b4dc4b843768c0113d673b}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Co-based superalloy, ECY768, applied on gas turbine vanes, shows the presence of cracks after service. EBSD studies revealed hcp transformation in the base material near cracked regions. This phase arises from a martensitic transformation of fcc matrix and bestows high fragility. The phase transformation is related to temperature and loading distribution that characterises components in service. However, at the service temperatures, the hcp transformation is not expected for ECY768. An in-house thermodynamic database was developed using the Calphad approach and thermodynamic calculations were applied to the complicated alloy composition for phase stability range evaluation. Moreover, a testing campaign was planned to artificially create this martensitic transformation and to comprehend the influence of plastic strain on fcc-hcp transformation. The transformation mechanisms were understood and some methods were developed for hcp-phase removal through refurbishment heat treatment. This paper is part of a thematic issue on the 9th International Charles Parsons Turbine and Generator Conference. All papers have been revised and extended before publication in Materials Science and Technology. © 2017 Institute of Materials, Minerals and Mining.}
\field{journaltitle}{Materials Science and Technology (United Kingdom)}
\field{note}{Cited by: 7}
\field{number}{9}
\field{title}{Service induced fcc→hcp martensitic transformation in a Co-based superalloy}
\field{type}{Article}
\field{volume}{33}
\field{year}{2017}
\field{pages}{1100\bibrangedash 1107}
\range{pages}{8}
\verb{doi}
\verb 10.1080/02670836.2016.1273866
\endverb
\keyw{Cracks; Gas turbines; Heating; Intermetallics; Linear transformations; Phase transitions; Superalloys; Thermodynamics; Calphad; Co-based superalloys; Fcc--hcp transformation; Loading distribution; Service temperature; Thermodynamic calculations; Thermodynamic database; Transformation mechanisms; Martensitic transformations}
\endentry
\entry{Xu2024}{article}{}
\name{author}{7}{}{%
{{hash=385a47d2bb25434940fd067ec0eefeb8}{%
family={Xu},
familyi={X\bibinitperiod},
given={Pengxiang},
giveni={P\bibinitperiod}}}%
{{hash=08ba777870b757f9331ed1020016fb15}{%
family={Li},
familyi={L\bibinitperiod},
given={Pengyang},
giveni={P\bibinitperiod}}}%
{{hash=8fbf8953af1445cf0f82198e60558b1c}{%
family={Chen},
familyi={C\bibinitperiod},
given={Yunshuai},
giveni={Y\bibinitperiod}}}%
{{hash=2938deb5048323c6e1bfdd80975d5b28}{%
family={Wang},
familyi={W\bibinitperiod},
given={Bo},
giveni={B\bibinitperiod}}}%
{{hash=328ce5b567f30212a8d3b006827759ce}{%
family={Lu},
familyi={L\bibinitperiod},
given={Han},
giveni={H\bibinitperiod}}}%
{{hash=cb445897487c10ff4b258c3c9f24731f}{%
family={Xu},
familyi={X\bibinitperiod},
given={Chaoyuan},
giveni={C\bibinitperiod}}}%
{{hash=4053eb20b077f36b6f24fee98d914d77}{%
family={Dai},
familyi={D\bibinitperiod},
given={Man},
giveni={M\bibinitperiod}}}%
}
\strng{namehash}{6938c7c1b4a6a24553b4840e5efe36fb}
\strng{fullhash}{e05ba0364f3a4b5b64786f8b2e9bae2e}
\strng{bibnamehash}{6938c7c1b4a6a24553b4840e5efe36fb}
\strng{authorbibnamehash}{6938c7c1b4a6a24553b4840e5efe36fb}
\strng{authornamehash}{6938c7c1b4a6a24553b4840e5efe36fb}
\strng{authorfullhash}{e05ba0364f3a4b5b64786f8b2e9bae2e}
\field{sortinit}{X}
\field{sortinithash}{1965c258adceecf23ce3d67b05113442}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Materials Today Communications}
\field{note}{Cited by: 1}
\field{title}{Optimization of process parameters for laser cladding Stellite6 cobalt-based alloy}
\field{type}{Article}
\field{volume}{38}
\field{year}{2024}
\verb{doi}
\verb 10.1016/j.mtcomm.2024.108430
\endverb
\endentry
\entry{Youdelis1983379}{article}{}
\name{author}{2}{}{%
{{hash=7ab404d8d06b9383560e88b458a28791}{%
family={Youdelis},
familyi={Y\bibinitperiod},
given={W.V.},
giveni={W\bibinitperiod}}}%
{{hash=2c8673ef1ad99270da26090334336285}{%
family={Kwon},
familyi={K\bibinitperiod},
given={O.},
giveni={O\bibinitperiod}}}%
}
\strng{namehash}{e5a7d0f316a223ef649b81b5fbb53200}
\strng{fullhash}{e5a7d0f316a223ef649b81b5fbb53200}
\strng{bibnamehash}{e5a7d0f316a223ef649b81b5fbb53200}
\strng{authorbibnamehash}{e5a7d0f316a223ef649b81b5fbb53200}
\strng{authornamehash}{e5a7d0f316a223ef649b81b5fbb53200}
\strng{authorfullhash}{e5a7d0f316a223ef649b81b5fbb53200}
\field{sortinit}{Y}
\field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Metal Science}
\field{note}{cited By 23}
\field{number}{8}
\field{title}{Carbide phases in cobalt base superalloy: Role of nucleation entropy in refinement}
\field{volume}{17}
\field{year}{1983}
\field{pages}{379\bibrangedash 384}
\range{pages}{6}
\verb{doi}
\verb 10.1179/030634583790420664
\endverb
\endentry
\entry{Yu2007586}{article}{}
\name{author}{3}{}{%
{{hash=f46cff6a47143fdbd36ae8842919e073}{%
family={Yu},
familyi={Y\bibinitperiod},
given={H.},
giveni={H\bibinitperiod}}}%
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
family={Ahmed},
familyi={A\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=39fbce992265c4dd42ff7cb6ab804ded}{%
family={Villiers\bibnamedelima Lovelock},
familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod},
given={H.},
giveni={H\bibinitperiod},
prefix={de},
prefixi={d\bibinitperiod}}}%
}
\strng{namehash}{8e67a0a25c7114030e7e739ed034990b}
\strng{fullhash}{8e67a0a25c7114030e7e739ed034990b}
\strng{bibnamehash}{8e67a0a25c7114030e7e739ed034990b}
\strng{authorbibnamehash}{8e67a0a25c7114030e7e739ed034990b}
\strng{authornamehash}{8e67a0a25c7114030e7e739ed034990b}
\strng{authorfullhash}{8e67a0a25c7114030e7e739ed034990b}
\field{sortinit}{Y}
\field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Journal of Tribology}
\field{note}{cited By 30}
\field{number}{3}
\field{title}{A comparison of the tribo-mechanical properties of a wear resistant cobalt-based alloy produced by different manufacturing processes}
\field{volume}{129}
\field{year}{2007}
\field{pages}{586\bibrangedash 594}
\range{pages}{9}
\verb{doi}
\verb 10.1115/1.2736450
\endverb
\endentry
\entry{Yu20091}{article}{}
\name{author}{4}{}{%
{{hash=f46cff6a47143fdbd36ae8842919e073}{%
family={Yu},
familyi={Y\bibinitperiod},
given={H.},
giveni={H\bibinitperiod}}}%
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
family={Ahmed},
familyi={A\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=720a4573d41f2302c51d8dfc20eb7025}{%
family={Lovelock},
familyi={L\bibinitperiod},
given={H.\bibnamedelimi de\bibnamedelima Villiers},
giveni={H\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
{{hash=0e68382b25995f7a55c9b600def7c365}{%
family={Davies},
familyi={D\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{fullhash}{57ca415fdcbe0d531a76658a78b7a3d4}
\strng{bibnamehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{authorbibnamehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{authorfullhash}{57ca415fdcbe0d531a76658a78b7a3d4}
\field{extraname}{1}
\field{sortinit}{Y}
\field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Journal of Tribology}
\field{note}{Cited by: 35}
\field{number}{1}
\field{title}{Influence of manufacturing process and alloying element content on the tribomechanical properties of cobalt-based alloys}
\field{type}{Article}
\field{volume}{131}
\field{year}{2009}
\field{pages}{1\bibrangedash 12}
\range{pages}{12}
\verb{doi}
\verb 10.1115/1.2991122
\endverb
\endentry
\entry{Yu20071385}{article}{}
\name{author}{4}{}{%
{{hash=f46cff6a47143fdbd36ae8842919e073}{%
family={Yu},
familyi={Y\bibinitperiod},
given={H.},
giveni={H\bibinitperiod}}}%
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
family={Ahmed},
familyi={A\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=416ccb52090ef6e21a2a60b61048fb4b}{%
family={De\bibnamedelima Villiers\bibnamedelima Lovelock},
familyi={D\bibinitperiod\bibinitdelim V\bibinitperiod\bibinitdelim L\bibinitperiod},
given={H.},
giveni={H\bibinitperiod}}}%
{{hash=0e68382b25995f7a55c9b600def7c365}{%
family={Davies},
familyi={D\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{fullhash}{5a41db039602f3f35fb4d51c6352f656}
\strng{bibnamehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{authorbibnamehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb}
\strng{authorfullhash}{5a41db039602f3f35fb4d51c6352f656}
\field{extraname}{2}
\field{sortinit}{Y}
\field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Proceedings of the World Congress on Engineering, WCE 2007}
\field{note}{cited By 7}
\field{title}{Tribo-mechanical evaluations of cobalt-based (Stellite 4) alloys manufactured via HIPing and casting}
\field{volume}{2}
\field{year}{2007}
\field{pages}{1385\bibrangedash 1390}
\range{pages}{6}
\endentry
\entry{Zhang20153579}{article}{}
\name{author}{5}{}{%
{{hash=3d3c96ee0dea81aaeaaee5f28cc812c8}{%
family={Zhang},
familyi={Z\bibinitperiod},
given={X.Z.},
giveni={X\bibinitperiod}}}%
{{hash=47fa1cfa42f039e59f4e014c1941c712}{%
family={Liu},
familyi={L\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=031a8718c5c3986f8c22b3e59c743db1}{%
family={Chen},
familyi={C\bibinitperiod},
given={K.Y.},
giveni={K\bibinitperiod}}}%
{{hash=276801cdeff1b23dc886b6bae5eac7a4}{%
family={Yao},
familyi={Y\bibinitperiod},
given={M.X.},
giveni={M\bibinitperiod}}}%
{{hash=1bd47217fcbd490142b34b2baa82ab5d}{%
family={Collier},
familyi={C\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
}
\strng{namehash}{bcba69d759e461d767e492b9ac899400}
\strng{fullhash}{07f72011458cfec5234b8f774c254f78}
\strng{bibnamehash}{bcba69d759e461d767e492b9ac899400}
\strng{authorbibnamehash}{bcba69d759e461d767e492b9ac899400}
\strng{authornamehash}{bcba69d759e461d767e492b9ac899400}
\strng{authorfullhash}{07f72011458cfec5234b8f774c254f78}
\field{sortinit}{Z}
\field{sortinithash}{96892c0b0a36bb8557c40c49813d48b3}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Corrosion behavior of wrought Stellite 6B and Stellite 6K, which have similar chemical composition but contain different carbon content, in 3.5 wt.% NaCl solution and in Green Death solution is investigated using various electrochemical methods, including potentiodynamic polarization, cyclic polarization, and electrochemical impedance spectroscopy (EIS). The obtained potentiodynamic polarization curves, cyclic polarization curves, and EIS spectra for these alloys are in good agreement, showing that Stellite 6K with higher carbon content is easier corroded due to its larger volume fraction of carbides but the Cr2O3 film formed on this alloy is stronger and more stable than that on Stellite 6B. Further immersion tests on these alloys show that Stellite 6K has less resistance to pitting corrosion. © 2015, ASM International.}
\field{journaltitle}{Journal of Materials Engineering and Performance}
\field{note}{Cited by: 6}
\field{number}{9}
\field{title}{Electrochemical Study of Corrosion Behavior of Wrought Stellite Alloys in Sodium Chloride and Green Death Solutions}
\field{type}{Article}
\field{volume}{24}
\field{year}{2015}
\field{pages}{3579\bibrangedash 3587}
\range{pages}{9}
\verb{doi}
\verb 10.1007/s11665-015-1629-4
\endverb
\keyw{Carbides; Corrosion; Corrosive effects; Electrochemical impedance spectroscopy; Oxide films; Pitting; Polarization; Potentiodynamic polarization; Sodium alloys; Sodium chloride; Stellite; Chemical compositions; Corrosion behavior; Cyclic polarization; Cyclic polarization curves; ELectrochemical methods; Electrochemical studies; Potentiodynamic polarization curves; Stellite alloy; Electrochemical corrosion}
\endentry
\entry{Zheng2022}{article}{}
\name{author}{6}{}{%
{{hash=dc838caf653462c31b94202548e1a5cb}{%
family={Zheng},
familyi={Z\bibinitperiod},
given={Renshi},
giveni={R\bibinitperiod}}}%
{{hash=8c3ae1ea3dc1ec24a5c62485a91d2e06}{%
family={Zhao},
familyi={Z\bibinitperiod},
given={Xiaoyu},
giveni={X\bibinitperiod}}}%
{{hash=c16ff443de0c5154d3a52882d493d8fa}{%
family={Dong},
familyi={D\bibinitperiod},
given={Leilei},
giveni={L\bibinitperiod}}}%
{{hash=baca2d4cc45983e734aa75be8b4b653a}{%
family={Liu},
familyi={L\bibinitperiod},
given={Gang},
giveni={G\bibinitperiod}}}%
{{hash=1fd5ec8bcbaf30b0eeea16e2e3c528d0}{%
family={Huang},
familyi={H\bibinitperiod},
given={Yi},
giveni={Y\bibinitperiod}}}%
{{hash=5aaa5e45597ad674617bba364b98dfa6}{%
family={Xu},
familyi={X\bibinitperiod},
given={Yunze},
giveni={Y\bibinitperiod}}}%
}
\strng{namehash}{d0bb538537ade3036ed264190bdfebd3}
\strng{fullhash}{c8b7c76946264a1103b6fa286761defa}
\strng{bibnamehash}{d0bb538537ade3036ed264190bdfebd3}
\strng{authorbibnamehash}{d0bb538537ade3036ed264190bdfebd3}
\strng{authornamehash}{d0bb538537ade3036ed264190bdfebd3}
\strng{authorfullhash}{c8b7c76946264a1103b6fa286761defa}
\field{sortinit}{Z}
\field{sortinithash}{96892c0b0a36bb8557c40c49813d48b3}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Engineering Failure Analysis}
\field{note}{Cited by: 13}
\field{title}{On the cavitation erosion-corrosion of pipeline steel at different locations of Venturi pipe}
\field{type}{Article}
\field{volume}{138}
\field{year}{2022}
\verb{doi}
\verb 10.1016/j.engfailanal.2022.106333
\endverb
\endentry
\enddatalist
\missing{20221xix}
\endrefsection
\endinput