Influence of manufacturing process on Cavitation Erosion on CoCrWMoCFeNiSiMn (Stellite 1) alloys

Vishakh Pradeep Kumar

2025-08-14 Thu

## Agenda

- Introduction
- Aims
- Methodology
- Results & Discussion
- Conclusion

#### Introduction

#### **Cavitation Erosion**

#### • What is cavitation?

Collapse of bubbles and the resulting high-frequency high-pressure shock waves. Caused by fluid pressure dropping to vapor pressure, which is particularly common with high fluid flow speeds [1].

Why does it matter?

Cavitation erosion leads to removal of material, crack growth, and part failure. Affects turbine blades, pump impellers, valves, stirrers, etc.

Example (A screenshot)

Stuff

#### Stellite mind map

This slide consists of some text with a number of bullet points:

## Why

#### A simple slide

This slide consists of some text with a number of bullet points:

- the first, very @important@, point!
- the previous point shows the use of the special markup which translates to the Beamer specific *alert* command for highlighting text.

The above list could be numbered or any other type of list and may include sub-lists.

#### A more complex slide

This slide illustrates the use of Beamer blocks. The following text, with its own headline, is displayed in a block:

#### Theorem (Org mode increases productivity)

- org mode means not having to remember LATEX commands.
- it is based on ascii text which is inherently portable.
- Emacs!

#### Two columns

- this slide consists of two columns
- the first (left) column has no heading and consists of text
- the second (right) column has an image and is enclosed in an example block

Example (A screenshot)

Stuff

## Aims

# Methodology

#### Methodology - ASTM G32 Cavitation Erosion Testing

Naturally aerated seawater at room temperature.



**Figure 1:** ASTM G32 apparatus for cavitation testing

#### Methodology - ASTM G32 Cavitation Erosion Testing



Figure 2: ASTM G32 apparatus in operation



**Figure 3:** Analytical Balance



**Figure 4:** Custom CNC-cut sample holder

#### Methodology - Seawater Filtering and pH

- Seawater was vacuum filtered in order to remove algae and suspended particles
- Seawater pH was measured after calibrating pH meter with buffer solutions of pH 7 and pH 14.



Figure 5: pH Meter reading of seawater

#### Methodology - Electrochemical Setup

- Instrument:
   Corrtest CS310 Potentiostat
   connected to conventional three-electrode cell.
- Working Electrode (WE):
   The sample, with an exposed area of 2cm<sup>2</sup>.
- Reference Electrode (RE):
   Saturated Calomel Electrode (SCE).
- Counter Electrode (CE): Graphite plate.
- Electrolyte:
   Naturally aerated seawater at room temperature.



**Figure 6:** Three-electrode electrochemical setup

## Methodology - Electrochemical Setup



Figure 7: Embedded sample after test, with corroded region



**Figure 8:** Top View of electrochemical setup



**Figure 9:** Initial prototype with platinum counter electrode

#### Methodology - Electrochemical Tests

- Open Circuit Potential (OCP)
   Before each electrochemical test, OCP was measured for one hour to ensure each sample reaches equilibrium, before EIS and LPR (explained below).
- Electrical Impedence Spectroscopy (EIS)

  The electrical response of the sample's interface with naturally aerated seawater
  - $\bullet$  Frequency  $10^5~\text{Hz} \rightarrow 10^{\text{-}1}~\text{Hz}$
  - Excitation voltage 10 mV and 20 mV
  - Spacing 20 per decade, logarithmic
- Linear Polarization Curve (LPR)

The current density through the sample with an externally imposed voltage

- $\bullet$  Voltage -20 mV wrt OCP  $\rightarrow$  20 mV wrt OCP
- Scan rate 0.1 mV/s
- Data Acquisition rate 10 Hz

#### Methodology - X-ray Diffraction (XRD)

The constituent phases were examined by X-ray diffraction

- Cu  $K\alpha$  radiation  $(\lambda = 1.5406 \text{ Å}),$
- Bragg-Brentano  $\theta$  :  $2\theta$ ,
- diffraction angle range  $2\theta \in [10^{\circ}, 80^{\circ}],$
- step size of 0.02°,
- scanning time of 0.5 sec/step,
- sample rotation enabled



Figure 10: As-cast sample in the Bruker D8 Advance

#### Methodology - Optical Microscopy (OM) & Electron Microscopy (SEM)

- Optical Microscopy (OM)
   Images were taken with Amscope metallurgical optical microscope
  - eyepiece magnification 10X
  - auxiliary magnification 5X, 10X, 20X, 50X, 100X
- Scanning Electron Microscopy (SEM) Images were taken with Vega TESCAN and Oxford Instruments
  - Secondary Emission (SE)
  - Backscattered Electrons (BSE)
  - Energy Dispersive X-ray Spectroscopy (EDS)



**Figure 11:** Screenshot of Vega TESCAN software during data acquisition of BSE image

## Results & Discussion

Conclusion

#### Bibliography i

#### References

[1] A. K. Krella, "Degradation and Protection of Materials from Cavitation Erosion: A Review," Materials, vol. 16, no. 5, p. 2058, Jan. 2023, ISSN: 1996-1944. DOI: 10.3390/ma16052058. Accessed: Jun. 5, 2025.