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Chapter 1

Introduction

1.1 Paragraph: Introduction to Stellite Alloys for Hostile Environments IG-

NORE_HEADING

Stellites are a family of cobalt-base superalloys used in aggresive service environments due to

retention of strength, wear resistance, and oxidation resistance at high temperature [1, 2]. Starting

with Elwood Haynes’s development of alloys like Stellite 6 in the early 1900s [3], stellites became

critical to components used in medical implants & tools, machine tools, and nuclear components,

and new variations on the original CoCrWC and CoCrMoC alloys see expanding use in sectors

like oil & gas and chemical processing [1, 4, 5].

The main alloying elements in Stellite alloys are cobalt (Co), chromium (25-33 wt% Cr),

tungsten (0-18 wt% W), molybdenum (0-18 wt% Mo), carbon (0.1-3.3 wt% C), and trace elements

iron (Fe), nickel (Ni), silicon (Si), phosphorus (P), sulphur (S), boron (B), lanthanum (La), &

manganese (Mn); Table 1.3 summarizes the nominal and measured composition of commonly

used Stellite alloys [6–15]. Stellite alloys possess a composite-like microstructure, combining a

cobalt-rich matrix strengthened by solid solutions of chromium, tungsten, & molybdenum, with

embedded hard carbide phases with carbide formers Cr (of carbide type M7C3 & M23C6) and

W/Mo (of carbide type MC & M6C), that impede wear and crack propagation [16, 17].

1.2 Role of HIPping vs as Cast

1.3 Paragraph: Tungsten and Molybdenum carbides

Tungsten (W) and molybdenum (Mo) are refractory elements that provide solid solution

strengthening to the matrix, by virtue of their large atomic size that impedes dislocation flow

when present as solute atoms [18], and also form M6C and M12C carbides along with MC car-

bides and Co3M & Co7M6 intermetallics during solidification.

In carbon-rich regions, the MC phase (of type WC and MoC) is observed [19], which ca

In carbon-poor regions, ternary M6C and M12C carbides have been identified, where the M6C

carbide (of type Co3Mo3C) is stable in the temperature ranges of 900C to 1300C and can vary in

composition from Mo40Co46C14 to Mo56Co30C14, while the Mo12C carbide of type (Co6Mo6C

2
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Alloy Co Cr W Mo C Fe Ni Si P S B La Mn Ref Process Type Observation

Stellite 1

47.7 30 13 0.5 2.5 3 1.5 1.3 0.5 [10] Nominal composition

48.6 33 12.5 0 2.5 1 1 1.3 0.1 [7]

46.84 31.7 12.7 0.29 2.47 2.3 2.38 1.06 0.26 [6] HIPeda ICP-OESb

Stellite 3
50.5 33 14 2.5 [9]

49.24 29.57 12.07 0.67 2.52 2.32 1.07 1.79 0.75 [14] HIPeda ICP-OESb

Stellite 4

45.43 30 14 1 0.57 3 3 2 1 [10] Nominal composition

51.5 30 14 1 1 2 0.5 [15]

51.9 33 14 1.1 [9]

49.41 31 14 0.12 0.67 2.16 1.82 1.04 0.26 [6] HIPeda ICP-OESb

50.2 29.8 14.4 0 0.7 1.9 1.9 0.8 0.3 [8] HIPeda

Stellite 6

51.5 28.5 4.5 1.5 1 5 3 2 1 2 [10] Nominal composition

63.81 27.08 5.01 0.96 0.73 0.87 1.47 0.07 [14] HIPeda ICP-OESb

60.3 29 4.5 1.2 2 2 1 [15]

61.7 27.5 4.5 0.5 1.15 1.5 1.5 1.15 0.5 [9]

58.46 29.5 4.6 0.22 1.09 2.09 2.45 1.32 0.27 [6] HIPeda ICP-OESb

58.04 30.59 4.72 1.24 2.03 1.87 0.80 0.01 0.01 [12] PTAWe OES

55.95 27.85 3.29 0.87 6.24 3.63 1.23 0.01 0.01 0.45 [12] GTAWd OES

52.40 30.37 3.57 0.96 6.46 3.93 1.70 0.01 0.01 0.3 [12] SMAWc OES
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60.3 31.10 4.70 0.30 1.10 1.70 1.50 1.30 0.00 0.3 [13] LP-DED ICP-AES & GDMS

60.6 27.7 5 0 1.2 1.9 2 1.3 0.3 [8] HIPeda

Stellite 12
53.6 30 8.3 1.4 3 1.5 0.7 1.5 [10] Nominal composition

55.22 29.65 8.15 0.2 1.49 2.07 2.04 0.91 0.27 [6] HIPeda ICP-OESb

Stellite 19 50.94 31.42 10.08 0.79 2.36 1.82 2 0.4 0.09 0.1 [11]

Stellite 20
41.05 33 17.5 2.45 2.5 2.5 1 [10] Nominal composition

43.19 31.85 16.3 0.27 2.35 2.5 2.28 1 0.26 [6] HIPeda ICP-OESb

Stellite 21
59.493 27 5.5 0.25 3 2.75 1 0.007 1 [10] Nominal composition

60.6 26.9 0 5.7 0.2 1.3 2.7 1.9 0.7 [8] HIPeda

Stellite 31
57.5 22 7.5 0.5 1.5 10 0.5 0.5 [10] Nominal composition

52.9 25.3 7.8 0 0.5 1.1 11.4 0.6 0.4 [8] HIPeda

Stellite 190
46.7 27 14 1 3.3 3 3 1 1 [10] Nominal composition

48.72 27.25 14.4 0.2 3.21 2.1 2.81 1 0.31 [6] HIPeda ICP-OESb
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Chapter 1. Introduction

carbide decomposes into Mo6C and µ −Mo phases above 1100C [20].

When present in large quantities, W and Mo also participate in formation of W-rich or Mo-rich

carbides during alloy solidification [5, 10],

leading to generation of Topologically Close-Packed (TCP) phases, such as the µ phase (of

type Co7W6 and Co7Mo6) and σ phase (pf type Co3W and Co3Mo) [19], which are intermetal-

lic brittle phases that add strength to the material [21, 22] while also promoting crack initiation

and propagation [23]. Previous work on the Stellite 1 sample by Ahmed et al [6] indicate that

Co6W6C is identified as the main W-rich carbide in Stellite 1, although Co3W3C was also iden-

tified inaddition to Co3W and Co7W intermetallics.

There are two main phases in the tungsten-carbon system: the hexagonal monocarbide WC

(ICDD Card# 03-065-4539, COD:2102265), denoted as δ − WC, and multiple variations of

hexagonal-close-packed subcarbide W2C (ICDD:00-002-1134, COD:1539792) [24, 25]

WC carbides precipitate as discrete particles distributed heterogeneously throughout the alloy

intragranularly

The precipitation of the tungsten-rich phase M6C is closely related to the decomposition of

the MC carbide, and the M6C only occurs in the vicinity of the MC [26], as M6C carbides form

only when the tungsten and.or molybdenum content exceeds 4-6 a/o.

Chromium carbides have high hardness and wear resistance, as well as excellent resistance to

chemical corrosion, making them often used in surface coatings [27]

In the Cr-C binary phase diagram, there are three phases : cubic Cr23C6 (space group , melting

point 1848 K), orthorhombic Cr3C2 (space group Pnma, melting point 2083 K) and Cr7C3 (space

group Pnma, melting point 2038 K) [28] [27]

The M23C6 carbides are formed during heat treatment of carbides with a lower M/C ratio or

from solid solution close to boundaries [28]. Fine M23C6 carbides act as obstacles to gliding of

mobile dislocations, which result in long-term creep strength [29].

Although M23C6 can precipitate as primary carbide during solidification, it is most commonly

found in secondary carbides along grain boundaries.

M7C3 is a metastable pseudo-eutectic carbide that typically forms at lower carbon-chromium

ratios and effectively transforms into secondary M23C6 upon heat treatment.

In addition to being a carbide former, chromium provides solid solution strengthing and cor-

rosion/oxidation resistance to the cobalt-based matrix.

The Cr7C3 carbide is unstable at high temperatures and transforms to M23C6 upon heat treat-

ment. Under further temperature and time, Cr23C6 partially transforms to Cr6C [30].

2Cr7C3 +9Cr →Cr23C6

5



Chapter 1. Introduction

Cr23C6 +13Cr → 6Cr6C

23Cr7C3 → 7Cr23C6 +27C

6C+23Cr →Cr23C6

The remarkable ability of Stellite alloys to withstand these specific challenges stems from

key metallurgical features. Their corrosion resistance is primarily attributed to a high chromium

content, typically 20-30 wt.%, which promotes the formation of a highly stable, tenacious, and

self-healing chromium-rich passive oxide film on the material’s surface; this film acts as a bar-

rier isolating the underlying alloy from the corrosive environment. Alloying elements such as

molybdenum and tungsten can further enhance this passivity, particularly improving resistance to

localized corrosion phenomena like pitting and crevice corrosion in aggressive media. Concur-

rently, their outstanding cavitation resistance is largely derived from the unique behavior of the

cobalt-rich matrix, which can undergo a stress-induced crystallographic transformation from a

face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. This transformation, often

facilitated by mechanical twinning, effectively absorbs the intense, localized impact energy from

collapsing cavitation bubbles and leads to significant work hardening, thereby impeding material

detachment and erosion.

Antony suggests that the cavitation-erosion resistance of Stellites derives from the matrix

phase and is enhanced by the strain-induced fcc →hcp allotropic transformation [31].

1.4 Corrosion resistance of Stellites

The cavitation erosion of stellites has been investigated in experimental studies [Wang2023,

Szala2022741, Mitelea2022967, Liu2022, Sun2021, Szala2021, Zhang2021, Mutascu2019776,

Kovalenko2019175, E201890, Ciubotariu2016154, Singh201487, Hattor2014257, Depczynski20131045,

Singh2012498, Romo201216, Hattori20091954, Ding201797, Guo2016123, Ciubotariu201698],

along with investigations into cobalt-based alloys [Lavigne2022, Hou2020, Liu2019, Zhang20191060,

E2019246, Romero2019581, Romero2019518, Lei20119, Qin2011209, Ding200866, Feng2006558].

Stellites achieve oxidation resistance through the formation of a passivating external Cr2O3

scale, due to the high proportion of Cr in their chemical composition [32].

as seen by Zhang et al in Green Death solution [33].

However, Cr-based carbides may be preferentialy oxidized below the external Cr2O3 scale,

particularly at the boundary of carbides which are depleted of Cr [33], where preferential attack

of carbides proceed until they have been consumed [32].

6



Chapter 1. Introduction

Lemaire et al [34] investigated the behavior of Stellite 6 in pressurized high temperature water

and proposed an oxidative wear mechanism where wear proceeds by repeated detachment of the

surface oxide spontaneously forming on the stellite surface.

Di Martino et al [35] also found that the protective chromium-rich film are abraded easily,

leading to further corrosion.

In such lower-temperature regimes, the passive films formed are typically very thin (in the

nanometer range, rather than the micrometer scale observed at high temperatures)

Molybdenum and tungsten have favorable effects on the selective oxidation of chromium un-

til chromium has been depleted, at which point molybdenum and tungsten result in increased

oxidation due to development of less protective phases [32].

7



Chapter 2

Analytical Investigations

2.1 Strain hardening

Cavitation bubble collapse induce a work hardening of the material surface, comparable to

that obtained in conventional peening [36], characterized by the thickness of the hardened layers

and the shape of the strain profile below the surface.

The strain profile within the material can usually be modeled by the following power law:

ε (x) = εs

(
1− x

L

)θ

(2.1)

where ε (x) is the strain at depth x from the eroded surface, εs is the failure rupture strain on

the eroded surface, L is the thickness of the hardened layer, and θ is the shape factor of the power

law.

After each cycle, the thickness of the hardened layer L and the surface strain εs will increase

continuously until damage is initiated at the surface (εs reaches the failure rupture strain εR), at

which point the strain profile is in steady-state.

εR = εmean

(
1− ∆L

L+∆L

)θ

(2.2)

In Woodford’s investigations on the $γ$ε transformation on the surface of cobalt-base al-

loys during cavitation erosion, the transformed layer was found to extend to a depth of 25 to 50
1Converted from the original 1e-3 to 2e-3 [37]}.

2.2 Correlative empirical methods

Empirical methods are common for addressing complex cavitation erosion, involving lab tests

to correlate cavitation erosion resistance with mechanical properties.

1. Karimi and Leo

The Karimi and Leo phenomenological model describes cavitation erosion rate as a function

of
1{
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Chapter 2. Analytical Investigations

Karimi and Leo

2. Noskievic

Noskievic formulated a mathematical relaxation model for the dynamics of the cavitation

erosion using a differential equation applied to forced oscillations with damping:

d2v
dt2 +2α

dv
dt

+β
2v = I (2.3)

where I is erosion intensity, which can vary linearly with time, v = dv
dt is erosion rate, α is

strain hardening or internal friction of material during plastic deformation, and β is coef-

ficient inversely proportional to material strength. The general solution of equation can be

written as:

v = a f0 (δ ,τ)+b f1 (δ ,τ) (2.4)

f0 ( δ ,τ) =



1− exp(−δτ)

[
δ

ω
sin(ωτ)+ cos(ωτ)

]
if −1 < δ < 1;δ ̸= 0

1− 1

δ0
2 −1

[
δ 2

0 exp
(
− τ

δ0

)
− exp(−δ0τ)

]
if δ > 1

1− cos(τ) if δ = 0

1− (1+ τ)exp(−τ) if δ = 1


(2.5)

f1 ( δ ,τ)=



1− 2δ

τ
[1− exp(−δτ)[cosωτ + εsinωτ]] if −1 < δ < 1;δ ̸= 0

1− 1
τ

(
2δ − 1

δ0
(
δ 2

0 −1
) [exp(−δ0τ)−δ 4exp

(
−τ

δ0

)])
if δ > 1

1− sin(τ)
τ

if δ = 0

1− 2 [1− exp(−τ)]

τ
+ exp(−τ) if δ = 1


(2.6)

δ =
α

β
, τ = β t, ε =

δ 2 −0.5
δ
√

1−δ 2
, ω =

√
1−δ 2, δ0 = δ +

√
δ 2 −1 (2.7)

3. Hoff and Langbein equation

Hoff and Langbein proposed a simple exponential function for the rate of erosion, repre-

senting the normalized erosion rate requiring only the A simple exponential function for the

rate of erosion was proposed by Hoff and Langbein,

ė
˙emax

= 1− e
−ti

t

9



Chapter 2. Analytical Investigations

ė - erosion rate at any time t ˙emax - Maximum of peak erosion rate ti - incubation period

(intercept on time axis extended from linear potion of erosion-time curve) t - exposure time

4. L Sitnik model

V =Vo

[
ln
(

t
to
+1
)]β

V̇ =
βVo

t + to

[
ln
(

t
to
+1
)]β−1

Vo > 0 to > 0 β >= 1

10



Chapter 3

Experimental Investigations

3.1 Materials and Microstructure

The HIPed Stellite 1 alloys were manufactured by canning the gas-atomized powders, man-

ufactured by Deloro Stellite (UK), at a temperature and pressure of 1200C and 100 MPa, for 4

hours in a HIPing vessel where the chemical composition and sieve analysis have been reported

in previous work by Ahmed et al [38].

The sieve analysis of these powders indicate that the majority of powder particles were in the

size range of 45 to 180 um.

The cast alloy samples were produced via sand casting process.

Co Cr W Mo C Fe Ni Si Mn

HIPed Stellite 1 Bal. 31.70 12.70 0.29 2.47 2.30 2.38 1.06 0.26

+250 +180 +125 +45 -45

HIPed Stellite 1 0.10 2.40 47.90 49.50 0.10

3.2 Materials and Microstructure

The HIPed alloy was produced via canning the gas-atomized powders at 1200C and 100 MPa

pressure for 4h, while the cast alloys were produced via sand casting. % Sieve analysis and

description of powders

% Refer to Table of chemical compositions of both cast and HIPed alloys.

The microstructure of the alloys were observed via SEM in BSE mode, and the chemical

compositions of the identified phases developed in the alloys were determined via EDS as well as

with XRD under Cu Kα radiation.

Image analysis was also conducted to ascertain the volume fractions of individual phases.

The Vickers microhardness was measured using a Wilson hardness tester under loads of

BLAH. Thirty measurements under each load were conducted on each sample.

The microstructure phase identification was investigated out using X-ray diffraction technique

with Cu-Kα radiation (λ = 1.5406). The volume fraction of ε-Co can be determined using the

11



Chapter 3. Experimental Investigations

intensity of the (200)γ and (101̄1)hcp peaks, using the following equation proposed by Sage and

Guillaud:

hcp(vol%) =
I(101̄1)ε

I(101̄1)ε +1.5I(200)γ

(3.1)

3.3 Experimental determination of SFE

To experimentally determine the SFE, the XRD method proposed by Reed and Schramm was

employed [39]:

SFE =
K111ω0G111a0

π
√

3

< ε2
50 >111
α

A−0.37 (3.2)

where:

K111ω0 = 6.6G111 =
1
3

1
C44 +C11 −C12

A =
1C44

C11 −C12
(3.3)

ployed [39]:

SFE = stacking fault energy mJ
m2 K111ω0 = 6.6, as obtained by A is the Zener elastic anisotropy

Ci j are elastic stiffness coefficients G111 is the shear modulus of the (111)-plane, in which stacking

faults are formed a0 is the lattic constant of the fcc-metal matrix < ε2
111 >50 is thr root mean square

microstrain in the <111> direction averaged over the distance of 50 α is stacking fault probability

1. Elastic constant

Microhardness measurements were taken on the surfaces of the as-cast and HIPed samples.

The Wilson Tukon 1102 hardness tester was used for Vickers microhardness testing with a

load of 300 grams (HV0.3) for 10s, and averaged by using ten individual indentations. The

specimen surface was prepared in the same fashion as for microstructural analysis.

Previous work

The indentation fracture toughness was made with hardness equipment (AVK-A, AKASHI)

at a load of 49 N for 10 s, and the value was obtained from five measurements on the cross

section. The fracture toughness was evaluated based to the Evans-Wilshaw equation [21,

22].

KIC = 0.079
(

P

a
3
2

)
log
(

4.5a
c

)
(3.4)

where P is indenter load [mN], 2c is the crack length [µm], and 2a is the length of indenta-

tion diagonal [µm]

12



Chapter 3. Experimental Investigations

3.4 Electrochemical instrument and experiments

A Corrtest potentiostat was used for electrochemical experiments in a conventional three elec-

trode cell, with the sample as working electrode with exposed area 2cm2, a saturated calomel

electrode (SCE) as reference electrode, and a Pt plate as counterelectrode.

All electrochemical experiments were performed at room temperature.

The open circuit potential was continuously recorded for 1 h, before the electrical impedence

spectroscopy (EIS), LPR, and cyclic voltametry experiments.

The aqueous oxidation of Stellite 6 alloy was investigated in a 1979 study using X-ray Photo-

electron Spectroscopy (XPS) [40]. Specimens were exposed to pH 10 water at 285°C. To under-

stand the oxidation behavior, the study measured dissolved oxygen concentration against exposure

duration.

The high-temperature corrosion resistance of stellite coatings is attributable to the formation

of cobalt & chromium surface [41].

Heathcock et al found that carbides are selectively eroded, with the carbide-matrix interface

acting as initiating erosion site [42].

1. Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation

IGNORE

2. Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Perfor-

mance IGNORE

3. Paragraph 6: Influence of HIPing IGNORE

Compared with the case alloys, the HIPed alloys had relatively finer, rounded, and dis-

tributed carbides.

4. Paragraph: Cavitation Erosion Resistance

The primary result of an erosion test is the cumulative mass loss versus time, which is then

converted to volumetric loss and mean depth of erosion (MDE) versus time for the purposes

of comparison between materials of different densities. The calculation of the mean depth

of erosion for this test method should be performed in conformity with ASTM G-32.

5. General Background %cite:@Franc2004265, @Romo201216, @Kumar2024, @Kim200685,

@Gao2024, @20221xix, @Usta2023, @Cheng2023, @Zheng2022

Cavitation erosion presents a significant challenge in materials degradation in various in-

dustrial sectors, including hydroelectric power, marine propulsion, and nuclear systems,

13



Chapter 3. Experimental Investigations

stemming from a complex interaction between fluid dynamics and material response [43,

44]. Hydrodynamically, the phenomenon initiates with the formation and subsequent vi-

olent collapse of vapor bubbles within a liquid, triggered by local pressures dropping to

the saturated vapor pressure. These implosions generate intense, localized shockwaves and

high-speed microjets that repeatedly impact adjacent solid surfaces [45]. From a materi-

als perspective, these impacts induce high stresses (100-1000 MPa) and high strain rates,

surpassing material thresholds and leading to damage accumulation via plastic deformation,

work hardening, fatigue crack initiation and propagation, and eventual material detachment.

Mitigating this requires materials capable of effectively absorbing or resisting this dynamic

loading, often under demanding conditions that may also include corrosion.

% Martensitic transformation Crucially, the cobalt matrix often possesses a low stacking

fault energy, facilitating a strain-induced martensitic transformation from a metastable face-

centered cubic γ phase to a hexagonal close-packed ε phase under the intense loading of

cavitation. This transformation is a primary mechanism for dissipating impact energy and

enhancing work hardening, contributing significantly to Stellite’s characteristic cavitation

resistance [46, 47].

HIPing is a thermo-mechanical material processing technique which involves the simulta-

neous application of pressure (up to 200 MPa) and temperature (2000 C), which results in

casting densification, porosity closure, and metallurgical bonding. [48]

While commonly applied via casting or weld overlays, processing routes like Hot Isostatic

Pressing (HIP) offer potential advantages such as microstructure refinement [49] finer mi-

crostructures and enhanced fatigue resistance [48, 50].

HIPing of surface coatings results in microstructure refinement, which can yield improved

fatigue and fracture resistance.

HIPing leads to carbide refinement, which can yield improved impact toughness [51], and

reduce carbide brittleness [48].

Furthermore, HIP facilitates the consolidation of novel ’blended’ alloys created from mixed

elemental or pre-alloyed powders, providing a pathway to potentially tailor compositions

or microstructures for optimized performance. However, despite the prevalence of Stellite

alloys and the known influence of processing on microstructure and properties, the specific

cavitation erosion behavior of HIP-consolidated Stellites, particularly these blended formu-

lations, remains underexplored in academic literature. Given that erosion mechanisms in

Stellites often involve interactions at the carbide-matrix interface [52], understanding how

HIP processing and compositional blending affect these interfaces and the matrix’s trans-

formative capacity under cavitation, especially when potentially coupled with corrosion,

14



Chapter 3. Experimental Investigations

constitutes a critical knowledge gap addressed by this research.

% Need to describe Stellite 1

3.5 Stellite 1

Stellite 1 is a high-carbon and high-tungsten alloy, making it suitable for demanding appli-

cations that require hardness & toughness to combat sliding & abrasive wear [17]

3.6 Stellites

3.7 Objectives and Scope of the Research Work

3.8 Thesis Outline

3.9 Literature Survey

3.10 Cavitation Tests

15



Chapter 4

Discussion

4.1 Experimental Test Procedure

4.1.1 Hardness Tests

4.1.2 Cavitation

4.2 Relationships between cavitation erosion resistance and mechanical properties

4.3 Influence of vibratory amplitude

% Insert the whole spiel by that French dude about displacement and pressure (and then ruin

it) The pressure of the solution depends on the amplitude of the vibratory tip attached to the

ultrasonic device. Under simple assumptions, kinetic energy of cavitation is proportional to the

square of the amplitude and maximum hammer pressure is proportional to A.

x = Asin(2π f t) (4.1)

v =
dx
dt

= 2π f Asin(2π f t) (4.2)

vmax = 2π f A (4.3)

vmean =
1
π

∫
π

0
Asin(2π f t) = 4 f A (4.4)

(4.5)

However, several researchers have found that erosion rates are not proportional to the second

power of amplitude, but instead a smaller number. Thiruvengadum [53] and Hobbs find that

erosion rates are proportional to the 1.8 and 1.5 power of peak-to-peak amplitude. Tomlinson et al

find that erosion rate is linearly proportional to peak-to-peak amplitude in copper [3]. Maximum

erosion rate is approximately proportional to the 1.5 power of p-p amplitude [4]. The propagation

of ultrasonic waves may result in thermal energy absorption or into chemical energy, resulting in

reduced power. For the purposes of converting data from studies that do not use an amplitude of

50um, a exponent factor of 1.5 has been applied.
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