2282 lines
132 KiB (Stored with Git LFS)
Plaintext
2282 lines
132 KiB (Stored with Git LFS)
Plaintext
% $ biblatex auxiliary file $
|
||
% $ biblatex bbl format version 3.3 $
|
||
% Do not modify the above lines!
|
||
%
|
||
% This is an auxiliary file used by the 'biblatex' package.
|
||
% This file may safely be deleted. It will be recreated by
|
||
% biber as required.
|
||
%
|
||
\begingroup
|
||
\makeatletter
|
||
\@ifundefined{ver@biblatex.sty}
|
||
{\@latex@error
|
||
{Missing 'biblatex' package}
|
||
{The bibliography requires the 'biblatex' package.}
|
||
\aftergroup\endinput}
|
||
{}
|
||
\endgroup
|
||
|
||
|
||
\refsection{0}
|
||
\datalist[entry]{none/global//global/global/global}
|
||
\entry{ahmedStructurePropertyRelationships2014}{article}{}{}
|
||
\name{author}{4}{}{%
|
||
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
|
||
family={Ahmed},
|
||
familyi={A\bibinitperiod},
|
||
given={R.},
|
||
giveni={R\bibinitperiod}}}%
|
||
{{useprefix=true,hash=75bf7913ab7463c6e3734bec975046fc}{%
|
||
family={Villiers\bibnamedelima Lovelock},
|
||
familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod},
|
||
given={H.\bibnamedelimi L.},
|
||
giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod},
|
||
prefix={de},
|
||
prefixi={d\bibinitperiod}}}%
|
||
{{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{%
|
||
family={Faisal},
|
||
familyi={F\bibinitperiod},
|
||
given={N.\bibnamedelimi H.},
|
||
giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}%
|
||
{{hash=0e68382b25995f7a55c9b600def7c365}{%
|
||
family={Davies},
|
||
familyi={D\bibinitperiod},
|
||
given={S.},
|
||
giveni={S\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{fullhash}{0ba22f8fbb626d88357e4651c3f66f4d}
|
||
\strng{fullhashraw}{0ba22f8fbb626d88357e4651c3f66f4d}
|
||
\strng{bibnamehash}{0ba22f8fbb626d88357e4651c3f66f4d}
|
||
\strng{authorbibnamehash}{0ba22f8fbb626d88357e4651c3f66f4d}
|
||
\strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{authorfullhash}{0ba22f8fbb626d88357e4651c3f66f4d}
|
||
\strng{authorfullhashraw}{0ba22f8fbb626d88357e4651c3f66f4d}
|
||
\field{extraname}{1}
|
||
\field{sortinit}{1}
|
||
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{This investigation considered the multiscale tribo-mechanical evaluations of CoCrMo (Stellite®21) alloys manufactured via two different processing routes of casting and HIP-consolidation from powder (Hot Isostatic Pressing). These involved hardness, nanoscratch, impact toughness, abrasive wear and sliding wear evaluations using pin-on-disc and ball-on-flat tests. HIPing improved the nanoscratch and ball-on-flat sliding wear performance due to higher hardness and work-hardening rate of the metal matrix. The cast alloy however exhibited superior abrasive wear and self-mated pin-on-disc wear performance. The tribological properties were more strongly influenced by the CoCr matrix, which is demonstrated in nanoscratch analysis.}
|
||
\field{day}{1}
|
||
\field{issn}{0301-679X}
|
||
\field{journaltitle}{Tribology International}
|
||
\field{month}{12}
|
||
\field{shortjournal}{Tribology International}
|
||
\field{title}{Structure–Property Relationships in a {{CoCrMo}} Alloy at Micro and Nano-Scales}
|
||
\field{urlday}{30}
|
||
\field{urlmonth}{6}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{80}
|
||
\field{year}{2014}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{98\bibrangedash 114}
|
||
\range{pages}{17}
|
||
\verb{doi}
|
||
\verb 10.1016/j.triboint.2014.06.015
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ARRWCGQS/Ahmed et al. - 2014 - Structure–property relationships in a CoCrMo alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/NS8T3TWL/Ahmed et al. - 2014 - Structure–property relationships in a CoCrMo alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/YLW4IKKP/S0301679X14002436.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0301679X14002436
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0301679X14002436
|
||
\endverb
|
||
\keyw{Manufacturing,Nanoscratch,Nanotribology,Wear}
|
||
\endentry
|
||
\entry{shinEffectMolybdenumMicrostructure2003}{article}{}{}
|
||
\name{author}{5}{}{%
|
||
{{hash=11c1c63fde4778e27fd93d2389dd1d9f}{%
|
||
family={Shin},
|
||
familyi={S\bibinitperiod},
|
||
given={Jong-Choul},
|
||
giveni={J\bibinithyphendelim C\bibinitperiod}}}%
|
||
{{hash=4d7d3c5a5d25916fcbdacaec6e7b281c}{%
|
||
family={Doh},
|
||
familyi={D\bibinitperiod},
|
||
given={Jung-Man},
|
||
giveni={J\bibinithyphendelim M\bibinitperiod}}}%
|
||
{{hash=9257782113324f27de8d34043cd84f7b}{%
|
||
family={Yoon},
|
||
familyi={Y\bibinitperiod},
|
||
given={Jin-Kook},
|
||
giveni={J\bibinithyphendelim K\bibinitperiod}}}%
|
||
{{hash=f1733c8d49f956fedeb6a8c03ce455c9}{%
|
||
family={Lee},
|
||
familyi={L\bibinitperiod},
|
||
given={Dok-Yol},
|
||
giveni={D\bibinithyphendelim Y\bibinitperiod}}}%
|
||
{{hash=d2534382552f3c10ee00cd39f0979de1}{%
|
||
family={Kim},
|
||
familyi={K\bibinitperiod},
|
||
given={Jae-Soo},
|
||
giveni={J\bibinithyphendelim S\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{35defe2b8f7d338cdec33698baeff00a}
|
||
\strng{fullhash}{178cbc46d086767ebf3c6301cad009cf}
|
||
\strng{fullhashraw}{178cbc46d086767ebf3c6301cad009cf}
|
||
\strng{bibnamehash}{178cbc46d086767ebf3c6301cad009cf}
|
||
\strng{authorbibnamehash}{178cbc46d086767ebf3c6301cad009cf}
|
||
\strng{authornamehash}{35defe2b8f7d338cdec33698baeff00a}
|
||
\strng{authorfullhash}{178cbc46d086767ebf3c6301cad009cf}
|
||
\strng{authorfullhashraw}{178cbc46d086767ebf3c6301cad009cf}
|
||
\field{sortinit}{1}
|
||
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{The Stellite 6 hardfacing alloys with different Mo contents have been deposited on AISI 1045-carbon steel using a Plasma Transferred Arc (PTA) welding machine. The effect of Mo on the microstructures and wear resistance properties of the Stellite 6 hardfacing alloys were investigated using optical microscopy, scanning electron microscopy, electron probe microanalysis and X-ray diffraction. With an increase in Mo contents, the M23C6 and M6C type carbides were formed instead of Cr-rich M7C3 and M23C6 type carbides observed in the interdenritic region of the Mo-free Stellite 6 hardfacing alloy. The size of Cr-rich carbides in interdendritic region decreased, but that of M6C type carbide increased as well as the refinement of Co-rich dendrites. The volume fraction of Cr-rich carbides slightly increased, but that of M6C type carbide abruptly increased. This microstructural change was responsible for the improvement of the mechanical properties such as hardness and wear resistance of the Mo-modified Stellite 6 hardfacing alloy.}
|
||
\field{day}{24}
|
||
\field{issn}{0257-8972}
|
||
\field{journaltitle}{Surface and Coatings Technology}
|
||
\field{month}{3}
|
||
\field{number}{2}
|
||
\field{shortjournal}{Surface and Coatings Technology}
|
||
\field{title}{Effect of Molybdenum on the Microstructure and Wear Resistance of Cobalt-Base {{Stellite}} Hardfacing Alloys}
|
||
\field{urlday}{5}
|
||
\field{urlmonth}{3}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{166}
|
||
\field{year}{2003}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{117\bibrangedash 126}
|
||
\range{pages}{10}
|
||
\verb{doi}
|
||
\verb 10.1016/S0257-8972(02)00853-8
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/JI5TD4ZS/Shin et al. - 2003 - Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing al.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/77WASIDI/S0257897202008538.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0257897202008538
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0257897202008538
|
||
\endverb
|
||
\keyw{Co-base Stellite alloys,Microstructure and wear resistance,Molybdenum,PTA}
|
||
\endentry
|
||
\entry{hasanBasicsStellitesMachining2016}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=08c8cfb937902323ad6056c9b7f675e2}{%
|
||
family={Hasan},
|
||
familyi={H\bibinitperiod},
|
||
given={Md\bibnamedelima Shahanur},
|
||
giveni={M\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
|
||
{{hash=eabf81bba7b970812c2add33930d03fb}{%
|
||
family={Mazid},
|
||
familyi={M\bibinitperiod},
|
||
given={Abdul\bibnamedelima Md},
|
||
giveni={A\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
{{hash=5af3717d3ceeece3929a2b29ad491166}{%
|
||
family={Clegg},
|
||
familyi={C\bibinitperiod},
|
||
given={Richard},
|
||
giveni={R\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{b1ede05cfaff686d5ee4e579d223721e}
|
||
\strng{fullhash}{34c0c2342c40213384252841489aeb1a}
|
||
\strng{fullhashraw}{34c0c2342c40213384252841489aeb1a}
|
||
\strng{bibnamehash}{34c0c2342c40213384252841489aeb1a}
|
||
\strng{authorbibnamehash}{34c0c2342c40213384252841489aeb1a}
|
||
\strng{authornamehash}{b1ede05cfaff686d5ee4e579d223721e}
|
||
\strng{authorfullhash}{34c0c2342c40213384252841489aeb1a}
|
||
\strng{authorfullhashraw}{34c0c2342c40213384252841489aeb1a}
|
||
\field{sortinit}{2}
|
||
\field{sortinithash}{8b555b3791beccb63322c22f3320aa9a}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Stellites are cobalt (Co)-based superalloys available in two main combinations: (a) a Tungsten (W) group with composition of Co-Cr-W-C, and (b) a Molybdenum (Mo) group containing Co-Cr-Mo-C. Stellites possess outstanding corrosion resistance, oxidation resistance, wear resistance, heat resistance, and low magnetic permeability. Components made of stellites work well in highly corrosive environments and maintain these advantageous properties at elevated temperatures. Components made of stellites are widely used in the oil and gas, automotive, nuclear power, paper and pulp, chemical and petrochemical, refineries, automobile, aerospace and aircraft industries. By virtue of their nonmagnetic, anticorrosive and non-reactivity to human body-fluid properties, stellites are used in medical surgery and in surgical tools, tooth and bone implants and replacements, heart valves, and in heart pacemakers. The hardness range of stellites is from 32 to 55 HRC, which makes stellites brittle materials but they have a low Young’s modulus. Due to their high hardness, dense but non-homogeneous molecular structure and lower thermal conductivity, machining operations for parts made of stellites are extremely difficult, categorising stellites as difficult-to-machine materials like Ti-alloys, inconels, composites and stainless steels. Usually, machine components made of stellites are produced by a deposition method onto steel substrates instead of expensive solid stellite bars. The rough surfaces of deposited stellites are then finished by grinding, rather than some other economic machining process, which is costly and time-consuming, making stellite products very expensive. This paper provides a basic overview of stellites applicable in engineering, their significances and specific applications, advantages and disadvantages in respect of machining processes. A brief review on experimental research on economically rational cutting parameters for turning operations of Stellite 6 using coated carbide inserts is presented in this paper. Interesting facts on the residual stresses induced by machining processes in Stellite 6 are revealed and analysed. The microhardness variation of machined surfaces of stellite 6 using different tool geometries is investigated in this research review. It is revealed that coated carbide inserts with a medium-size nose radius perform better in respect of hardness changes and heat generation, producing minimum phase changes on machined surfaces of stellite 6.}
|
||
\field{day}{19}
|
||
\field{issn}{0128-1852}
|
||
\field{journaltitle}{International Journal of Engineering Materials and Manufacture}
|
||
\field{langid}{english}
|
||
\field{month}{12}
|
||
\field{number}{2}
|
||
\field{shortjournal}{IJEMM}
|
||
\field{title}{The {{Basics}} of {{Stellites}} in {{Machining Perspective}}}
|
||
\field{urlday}{11}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{1}
|
||
\field{year}{2016}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{35\bibrangedash 50}
|
||
\range{pages}{16}
|
||
\verb{doi}
|
||
\verb 10.26776/ijemm.01.02.2016.01
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/4QFRZS4P/Hasan et al. - 2016 - The Basics of Stellites in Machining Perspective.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://deerhillpublishing.com/index.php/ijemm/article/view/13
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://deerhillpublishing.com/index.php/ijemm/article/view/13
|
||
\endverb
|
||
\endentry
|
||
\entry{malayogluComparingPerformanceHIPed2003}{article}{}{}
|
||
\name{author}{2}{}{%
|
||
{{hash=71f57eb10950396ed3fa62c703ddaee5}{%
|
||
family={Malayoglu},
|
||
familyi={M\bibinitperiod},
|
||
given={U.},
|
||
giveni={U\bibinitperiod}}}%
|
||
{{hash=c00a172220606f67c3da2492047a9b71}{%
|
||
family={Neville},
|
||
familyi={N\bibinitperiod},
|
||
given={A.},
|
||
giveni={A\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\strng{fullhash}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\strng{fullhashraw}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\strng{bibnamehash}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\strng{authorbibnamehash}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\strng{authornamehash}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\strng{authorfullhash}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\strng{authorfullhashraw}{49054a18ed24a57daa4c3278c94c6ce5}
|
||
\field{sortinit}{3}
|
||
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{In this paper, results from erosion–corrosion tests performed under liquid–solid erosion conditions in 3.5\% NaCl liquid medium are reported. The focus of the paper is to compare the behaviour of Cast and Hot Isostatically Pressed (HIPed) Stellite 6 alloy in terms of their electrochemical corrosion characteristics, their resistance to mechanical degradation and relationship between microstructure and degradation mechanisms. It has been shown that HIPed Stellite 6 possesses better erosion and erosion corrosion resistance than that of Cast Stellite 6 and two stainless steels (UNS S32760 and UNS S31603) under the same solid loading (200 and 500mg/l), and same temperature (20 and 50°C). The material removal mechanisms have been identified by using atomic force microscopy (AFM) and shown preferential removal of the Co-rich matrix to be less extensive on the HIPed material.}
|
||
\field{day}{1}
|
||
\field{issn}{0043-1648}
|
||
\field{journaltitle}{Wear}
|
||
\field{month}{8}
|
||
\field{number}{1}
|
||
\field{series}{14th {{International Conference}} on {{Wear}} of {{Materials}}}
|
||
\field{shortjournal}{Wear}
|
||
\field{title}{Comparing the Performance of {{HIPed}} and {{Cast Stellite}} 6 Alloy in Liquid–Solid Slurries}
|
||
\field{urlday}{17}
|
||
\field{urlmonth}{2}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{255}
|
||
\field{year}{2003}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{181\bibrangedash 194}
|
||
\range{pages}{14}
|
||
\verb{doi}
|
||
\verb 10.1016/S0043-1648(03)00287-4
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/62ET2JSP/Malayoglu and Neville - 2003 - Comparing the performance of HIPed and Cast Stellite 6 alloy in liquid–solid slurries.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/54ZML2SM/S0043164803002874.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0043164803002874
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0043164803002874
|
||
\endverb
|
||
\keyw{Cast Stellite 6,Corrosion,Erosion,HIPed,Liquid–solid slurries}
|
||
\endentry
|
||
\entry{raghuRecentDevelopmentsWear1997}{inproceedings}{}{}
|
||
\name{author}{2}{}{%
|
||
{{hash=d1ffaf092dcf3a359da1985267f727a1}{%
|
||
family={Raghu},
|
||
familyi={R\bibinitperiod},
|
||
given={Damodaran},
|
||
giveni={D\bibinitperiod}}}%
|
||
{{hash=71999827eaf46be63a959ef13f1b03b6}{%
|
||
family={Wu},
|
||
familyi={W\bibinitperiod},
|
||
given={James\bibnamedelimb B.\bibnamedelimi C.},
|
||
giveni={J\bibinitperiod\bibinitdelim B\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{Association for Materials Protection and Performance}%
|
||
}
|
||
\strng{namehash}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\strng{fullhash}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\strng{fullhashraw}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\strng{bibnamehash}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\strng{authorbibnamehash}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\strng{authornamehash}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\strng{authorfullhash}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\strng{authorfullhashraw}{5ea6c6486093aae3c9028d34e8e63462}
|
||
\field{sortinit}{3}
|
||
\field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Abstract. Oil production and refining environments pose a very severe wear and corrosion environment. Material designers are challenged with the need to de}
|
||
\field{day}{9}
|
||
\field{eventtitle}{{{CORROSION}} 1997}
|
||
\field{langid}{english}
|
||
\field{month}{3}
|
||
\field{title}{Recent {{Developments}} in {{Wear}} and {{Corrosion Resistant Alloys}} for {{Oil Industry}}}
|
||
\field{urlday}{12}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{year}{1997}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{1\bibrangedash 20}
|
||
\range{pages}{20}
|
||
\verb{doi}
|
||
\verb 10.5006/C1997-97016
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://dx.doi.org/10.5006/C1997-97016
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://dx.doi.org/10.5006/C1997-97016
|
||
\endverb
|
||
\endentry
|
||
\entry{ahmedMappingMechanicalProperties2023}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
|
||
family={Ahmed},
|
||
familyi={A\bibinitperiod},
|
||
given={R.},
|
||
giveni={R\bibinitperiod}}}%
|
||
{{hash=8da5f61983121a25e044ca92bd036b2a}{%
|
||
family={Fardan},
|
||
familyi={F\bibinitperiod},
|
||
given={A.},
|
||
giveni={A\bibinitperiod}}}%
|
||
{{hash=0e68382b25995f7a55c9b600def7c365}{%
|
||
family={Davies},
|
||
familyi={D\bibinitperiod},
|
||
given={S.},
|
||
giveni={S\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{Taylor \& Francis}%
|
||
}
|
||
\strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{fullhash}{b3a15b2b31620e3640b3b3a16271687c}
|
||
\strng{fullhashraw}{b3a15b2b31620e3640b3b3a16271687c}
|
||
\strng{bibnamehash}{b3a15b2b31620e3640b3b3a16271687c}
|
||
\strng{authorbibnamehash}{b3a15b2b31620e3640b3b3a16271687c}
|
||
\strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{authorfullhash}{b3a15b2b31620e3640b3b3a16271687c}
|
||
\strng{authorfullhashraw}{b3a15b2b31620e3640b3b3a16271687c}
|
||
\field{extraname}{2}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Stellite alloys have good wear resistance and maintain their strength up to 600°C, making them suitable for various industrial applications like cutting tools and combustion engine parts. This investigation was aimed at i) manufacturing new Stellite alloy blends using powder metallurgy and ii) mathematically mapping hardness, yield strength, ductility and impact energy of base and alloy blends. Linear, exponential, polynomial approximations and dimensional analyses were conducted in this semi-empirical mathematical modelling approach. Base alloy compositions similar to Stellite 1, 4, 6, 12, 20 and 190 were used in this investigation to form new alloys via blends. The microstructure was analysed using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Mechanical performance of alloys was conducted using tensile, hardness and Charpy impact tests. MATLAB® coding was used for the development of property maps. This investigation indicates that hardness and yield strength can be linked to the wt.\% composition of carbon and tungsten using linear approximation with a maximum variance of 5\% and 20\%, respectively. Elongation and carbide fraction showed a non-linear relationship with alloy composition. Impact energy was linked with elongation through polynomial approximation. A dimensional analysis was developed by interlinking carbide fraction, hardness, yield strength, and elongation to impact energy.}
|
||
\field{day}{2}
|
||
\field{issn}{2374-068X}
|
||
\field{journaltitle}{Advances in Materials and Processing Technologies}
|
||
\field{month}{6}
|
||
\field{number}{0}
|
||
\field{title}{Mapping the Mechanical Properties of Cobalt-Based Stellite Alloys Manufactured via Blending}
|
||
\field{urlday}{13}
|
||
\field{urlmonth}{7}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{0}
|
||
\field{year}{2023}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{1\bibrangedash 30}
|
||
\range{pages}{30}
|
||
\verb{doi}
|
||
\verb 10.1080/2374068X.2023.2220242
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/56A9J4FD/Ahmed et al. - Mapping the mechanical properties of cobalt-based .pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/PAN22ZZN/Ahmed et al. - 2024 - Mapping the mechanical properties of cobalt-based stellite alloys manufactured via blending.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1080/2374068X.2023.2220242
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1080/2374068X.2023.2220242
|
||
\endverb
|
||
\keyw{Blending,Hiping,Mathematical model,Powder metallurgy,Stellite alloys,Structure-property relationships}
|
||
\endentry
|
||
\entry{alimardaniEffectLocalizedDynamic2010}{article}{}{}
|
||
\name{author}{4}{}{%
|
||
{{hash=b1d020be51ce7b141b4cf03868da762c}{%
|
||
family={Alimardani},
|
||
familyi={A\bibinitperiod},
|
||
given={Masoud},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=44e10f283ada211ed0a7aa6d9913d23f}{%
|
||
family={Fallah},
|
||
familyi={F\bibinitperiod},
|
||
given={Vahid},
|
||
giveni={V\bibinitperiod}}}%
|
||
{{hash=5aaf85cb279ac1471a04ce9c932a1122}{%
|
||
family={Khajepour},
|
||
familyi={K\bibinitperiod},
|
||
given={Amir},
|
||
giveni={A\bibinitperiod}}}%
|
||
{{hash=88451951b0b3c1cc4383d3cebfc151ac}{%
|
||
family={Toyserkani},
|
||
familyi={T\bibinitperiod},
|
||
given={Ehsan},
|
||
giveni={E\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{86846ed827567cfd839f7c014178ad64}
|
||
\strng{fullhash}{6d9fe21dc14c2e93f67f0a8f73f5082f}
|
||
\strng{fullhashraw}{6d9fe21dc14c2e93f67f0a8f73f5082f}
|
||
\strng{bibnamehash}{6d9fe21dc14c2e93f67f0a8f73f5082f}
|
||
\strng{authorbibnamehash}{6d9fe21dc14c2e93f67f0a8f73f5082f}
|
||
\strng{authornamehash}{86846ed827567cfd839f7c014178ad64}
|
||
\strng{authorfullhash}{6d9fe21dc14c2e93f67f0a8f73f5082f}
|
||
\strng{authorfullhashraw}{6d9fe21dc14c2e93f67f0a8f73f5082f}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{In laser cladding, high cooling rates create outcomes with superior mechanical and metallurgical properties. However, this characteristic along with the additive nature of the process significantly contributes to the formation of thermal stresses which are the main cause of any potential delamination and crack formation across the deposited layers. This drawback is more prominent for additive materials such as Stellite 1 which are by nature crack-sensitive during the hardfacing process. In this work, parallel to the experimental investigation, a numerical model is used to study the temperature distributions and thermal stresses throughout the deposition of Stellite 1 for hardfacing application. To manage the thermal stresses, the effect of preheating the substrate in a localized dynamic fashion is investigated. The numerical and experimental analyses are conducted by the deposition of Stellite 1 powder on the substrate of AISI-SAE 4340 alloy steel using a 1.1kW fiber laser. Experimental results confirm that by preheating the substrate a crack-free coating layer of Stellite 1 well-bonded to the substrate with a uniform dendritic structure, well-distributed throughout the deposited layer, can be obtained contrary to non-uniform structures formed in the coating of the non-preheated substrate with several cracks.}
|
||
\field{day}{25}
|
||
\field{issn}{0257-8972}
|
||
\field{journaltitle}{Surface and Coatings Technology}
|
||
\field{month}{8}
|
||
\field{number}{23}
|
||
\field{shortjournal}{Surface and Coatings Technology}
|
||
\field{title}{The Effect of Localized Dynamic Surface Preheating in Laser Cladding of {{Stellite}} 1}
|
||
\field{urlday}{31}
|
||
\field{urlmonth}{3}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{204}
|
||
\field{year}{2010}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{3911\bibrangedash 3919}
|
||
\range{pages}{9}
|
||
\verb{doi}
|
||
\verb 10.1016/j.surfcoat.2010.05.009
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/KNRYRU6U/Alimardani et al. - 2010 - The effect of localized dynamic surface preheating in laser cladding of Stellite 1.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/T89N5WXW/S0257897210003701.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0257897210003701
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0257897210003701
|
||
\endverb
|
||
\keyw{Crack formation,Hardfacing alloys,Laser cladding,Preheating process,Temperature and thermal stress fields}
|
||
\endentry
|
||
\entry{ashworthMicrostructurePropertyRelationships1999}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=a0a9668f5a93080c8425a8cf80e9d0d2}{%
|
||
family={Ashworth},
|
||
familyi={A\bibinitperiod},
|
||
given={M.A.},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=27753a82b6390957cb920ec5052f0810}{%
|
||
family={Jacobs},
|
||
familyi={J\bibinitperiod},
|
||
given={M.H.},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=0e68382b25995f7a55c9b600def7c365}{%
|
||
family={Davies},
|
||
familyi={D\bibinitperiod},
|
||
given={S.},
|
||
giveni={S\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{SAGE Publications}%
|
||
}
|
||
\strng{namehash}{abac9b3a3bd887c0c8dedb4a4e169c92}
|
||
\strng{fullhash}{68dce5901af799f73fc399cf947f81b9}
|
||
\strng{fullhashraw}{68dce5901af799f73fc399cf947f81b9}
|
||
\strng{bibnamehash}{68dce5901af799f73fc399cf947f81b9}
|
||
\strng{authorbibnamehash}{68dce5901af799f73fc399cf947f81b9}
|
||
\strng{authornamehash}{abac9b3a3bd887c0c8dedb4a4e169c92}
|
||
\strng{authorfullhash}{68dce5901af799f73fc399cf947f81b9}
|
||
\strng{authorfullhashraw}{68dce5901af799f73fc399cf947f81b9}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{In the present paper the microstructure and properties of a range of hipped Stellite powders are investigated, the basic aim of the study being to generate a materia/property database to facilitate alloy selection for potential applications involving net shape component manufacture. Particular attention is paid to the morphology, particle size distribution, and surface composition of the as atomised powders and their effect on subsequent consolidation. The consolidated powders are fully characterised in terms of microstructure and the composition and distribution of secondary phases. The effect of hipping temperature on the microstructure, hardness, and tensile properties of the powders are discussed in terms of the optimum processing temperature for the various alloys.}
|
||
\field{day}{1}
|
||
\field{issn}{0032-5899}
|
||
\field{journaltitle}{Powder Metallurgy}
|
||
\field{langid}{english}
|
||
\field{month}{3}
|
||
\field{number}{3}
|
||
\field{title}{Microstructure and Property Relationships in Hipped {{Stellite}} Powders}
|
||
\field{urlday}{3}
|
||
\field{urlmonth}{4}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{42}
|
||
\field{year}{1999}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{243\bibrangedash 249}
|
||
\range{pages}{7}
|
||
\verb{doi}
|
||
\verb 10.1179/003258999665585
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/AW8NKEZU/Ashworth et al. - 1999 - Microstructure and property relationships in hipped Stellite powders.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://journals.sagepub.com/action/showAbstract
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://journals.sagepub.com/action/showAbstract
|
||
\endverb
|
||
\endentry
|
||
\entry{bunchCorrosionGallingResistant1989}{inproceedings}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=ff8de9c468efb7eab8b92e573d3949ed}{%
|
||
family={Bunch},
|
||
familyi={B\bibinitperiod},
|
||
given={P.\bibnamedelimi O.},
|
||
giveni={P\bibinitperiod\bibinitdelim O\bibinitperiod}}}%
|
||
{{hash=47f88033d1313a3ac56378baefb344e4}{%
|
||
family={Hartmann},
|
||
familyi={H\bibinitperiod},
|
||
given={M.\bibnamedelimi P.},
|
||
giveni={M\bibinitperiod\bibinitdelim P\bibinitperiod}}}%
|
||
{{hash=7f4198582fc42b8ddab60cd433790594}{%
|
||
family={Bednarowicz},
|
||
familyi={B\bibinitperiod},
|
||
given={T.\bibnamedelimi A.},
|
||
giveni={T\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{OnePetro}%
|
||
}
|
||
\strng{namehash}{b4088224b2a9ea87c42c7ab641ebe2de}
|
||
\strng{fullhash}{27ba512d074ac1ae4276e7a91ea23549}
|
||
\strng{fullhashraw}{27ba512d074ac1ae4276e7a91ea23549}
|
||
\strng{bibnamehash}{27ba512d074ac1ae4276e7a91ea23549}
|
||
\strng{authorbibnamehash}{27ba512d074ac1ae4276e7a91ea23549}
|
||
\strng{authornamehash}{b4088224b2a9ea87c42c7ab641ebe2de}
|
||
\strng{authorfullhash}{27ba512d074ac1ae4276e7a91ea23549}
|
||
\strng{authorfullhashraw}{27ba512d074ac1ae4276e7a91ea23549}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{ABSTRACT. Application of corrosion resistant hardfacing materials are required to maintain exceptional reliability for metal to metal sealing in high pressure gate valves used for offshore production wells. New hardfacing materials have been developed and tailored for use where defense against degradation effects of high temperature, high pressure, H2S, C02, free sulfur and brine environments is required. Using a plasma transferred arc (PTA) weld process, new hardfacings of Stellite cobalt base materials have been successfully applied to nickel base alloy substrates. These hardfacings provide exceptional corrosion resistance over previously used materials produced by spray and fuse as well as high velocity combustion spray (}
|
||
\field{day}{1}
|
||
\field{eventtitle}{Offshore {{Technology Conference}}}
|
||
\field{langid}{english}
|
||
\field{month}{5}
|
||
\field{title}{Corrosion/{{Galling Resistant Hardfacing Materials}} for {{Offshore Production Valves}}}
|
||
\field{urlday}{1}
|
||
\field{urlmonth}{4}
|
||
\field{urlyear}{2025}
|
||
\field{year}{1989}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\verb{doi}
|
||
\verb 10.4043/6070-MS
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/JWXEABEH/Bunch et al. - 1989 - CorrosionGalling Resistant Hardfacing Materials for Offshore Production Valves.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://dx.doi.org/10.4043/6070-MS
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://dx.doi.org/10.4043/6070-MS
|
||
\endverb
|
||
\endentry
|
||
\entry{davis2000nickel}{book}{}{}
|
||
\name{author}{2}{}{%
|
||
{{hash=d24975e937cc4c8eafeb981d8d16a1d4}{%
|
||
family={Davis},
|
||
familyi={D\bibinitperiod},
|
||
given={J.R.},
|
||
giveni={J\bibinitperiod}}}%
|
||
{{hash=2e482fdb03378296689bc75a76c2bdc4}{%
|
||
family={Committee},
|
||
familyi={C\bibinitperiod},
|
||
given={A.S.M.I.H.},
|
||
giveni={A\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{ASM International}%
|
||
}
|
||
\strng{namehash}{ded5e703628bfa51629c3e9340068998}
|
||
\strng{fullhash}{ded5e703628bfa51629c3e9340068998}
|
||
\strng{fullhashraw}{ded5e703628bfa51629c3e9340068998}
|
||
\strng{bibnamehash}{ded5e703628bfa51629c3e9340068998}
|
||
\strng{authorbibnamehash}{ded5e703628bfa51629c3e9340068998}
|
||
\strng{authornamehash}{ded5e703628bfa51629c3e9340068998}
|
||
\strng{authorfullhash}{ded5e703628bfa51629c3e9340068998}
|
||
\strng{authorfullhashraw}{ded5e703628bfa51629c3e9340068998}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{isbn}{978-0-87170-685-0}
|
||
\field{series}{{{ASM}} Specialty Handbook}
|
||
\field{title}{Nickel, Cobalt, and Their Alloys}
|
||
\field{year}{2000}
|
||
\field{dateera}{ce}
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/QDINBA9I/Davis and Committee - 2000 - Nickel, cobalt, and their alloys.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://books.google.ae/books?id=IePhmnbmRWkC
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://books.google.ae/books?id=IePhmnbmRWkC
|
||
\endverb
|
||
\endentry
|
||
\entry{desaiEffectCarbideSize1984}{article}{}{}
|
||
\name{author}{4}{}{%
|
||
{{hash=fc05df304d9bc11398a5c124af37591d}{%
|
||
family={Desai},
|
||
familyi={D\bibinitperiod},
|
||
given={V.\bibnamedelimi M.},
|
||
giveni={V\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
{{hash=ec550afc1e3aea4900fb58655a64f6da}{%
|
||
family={Rao},
|
||
familyi={R\bibinitperiod},
|
||
given={C.\bibnamedelimi M.},
|
||
giveni={C\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
{{hash=33b6be2f67c7c521e0d9dd2e94cb03fa}{%
|
||
family={Kosel},
|
||
familyi={K\bibinitperiod},
|
||
given={T.\bibnamedelimi H.},
|
||
giveni={T\bibinitperiod\bibinitdelim H\bibinitperiod}}}%
|
||
{{hash=1ad7f5a75d8dc26e538ca7e4d233e622}{%
|
||
family={Fiore},
|
||
familyi={F\bibinitperiod},
|
||
given={N.\bibnamedelimi F.},
|
||
giveni={N\bibinitperiod\bibinitdelim F\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{aeae2b334e415789011cf05b2beda57d}
|
||
\strng{fullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de}
|
||
\strng{fullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de}
|
||
\strng{bibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de}
|
||
\strng{authorbibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de}
|
||
\strng{authornamehash}{aeae2b334e415789011cf05b2beda57d}
|
||
\strng{authorfullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de}
|
||
\strng{authorfullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{A study of the effect of carbide size on the abrasion resistance of two cobalt-base powder metallurgy alloys, alloys 6 and 19, was conducted using low stress abrasion with a relatively hard abrasive, A12O3. Specimens of each alloy were produced with different carbide sizes but with a constant carbide volume fraction. The wear test results show a monotonie decrease in wear rate with increasing carbide size. Scanning electron microscopy of the worn surfaces and of wear debris particles shows that the primary material removal mechanism is micromachining. Small carbides provide little resistance to micromachining because of the fact that many of them are contained entirely in the volume of micromachining chips. The large carbides must be directly cut by the abrasive particles. Other less frequently observed material removal mechanisms included direct carbide pull-out and the formation of large pits in fine carbide specimens. These processes are considered secondary in the present work, but they may have greater importance in wear by relatively soft abrasives which do not cut chips from the carbide phase of these alloys. Some indication of this is provided by limited studies using a relatively soft abrasive, rounded quartz.}
|
||
\field{annotation}{59 citations (Semantic Scholar/DOI) [2025-04-12]}
|
||
\field{day}{15}
|
||
\field{issn}{0043-1648}
|
||
\field{journaltitle}{Wear}
|
||
\field{month}{2}
|
||
\field{number}{1}
|
||
\field{shortjournal}{Wear}
|
||
\field{title}{Effect of Carbide Size on the Abrasion of Cobalt-Base Powder Metallurgy Alloys}
|
||
\field{urlday}{17}
|
||
\field{urlmonth}{11}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{94}
|
||
\field{year}{1984}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{89\bibrangedash 101}
|
||
\range{pages}{13}
|
||
\verb{doi}
|
||
\verb 10.1016/0043-1648(84)90168-6
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/NVMRPKQI/Sreedhar et al. - 2017 - Cavitation damage Theory and measurements – A review.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/TA9LLNAT/Desai et al. - 1984 - Effect of carbide size on the abrasion of cobalt-base powder metallurgy alloys.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/V2XEQJ5X/0043164884901686.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/0043164884901686
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/0043164884901686
|
||
\endverb
|
||
\keyw{Cavitation,Cavitation equipment,Damage measurement,Instrumentation,Sodium}
|
||
\endentry
|
||
\entry{ferozhkhanMetallurgicalStudyStellite2017}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=bed071d3745587c303d1b4411281a295}{%
|
||
family={Ferozhkhan},
|
||
familyi={F\bibinitperiod},
|
||
given={Mohammed\bibnamedelima Mohaideen},
|
||
giveni={M\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
{{hash=fdb6a42317e0e10a267ce7c918a63e11}{%
|
||
family={Kumar},
|
||
familyi={K\bibinitperiod},
|
||
given={Kottaimathan\bibnamedelima Ganesh},
|
||
giveni={K\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
|
||
{{hash=250edfbd96cbc7ebd974dd11a2098198}{%
|
||
family={Ravibharath},
|
||
familyi={R\bibinitperiod},
|
||
given={Rajanbabu},
|
||
giveni={R\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{7a694c7ba4c57888494ddc3675c7d70c}
|
||
\strng{fullhash}{c63a5ee4b2edf1e71712795226de5b1a}
|
||
\strng{fullhashraw}{c63a5ee4b2edf1e71712795226de5b1a}
|
||
\strng{bibnamehash}{c63a5ee4b2edf1e71712795226de5b1a}
|
||
\strng{authorbibnamehash}{c63a5ee4b2edf1e71712795226de5b1a}
|
||
\strng{authornamehash}{7a694c7ba4c57888494ddc3675c7d70c}
|
||
\strng{authorfullhash}{c63a5ee4b2edf1e71712795226de5b1a}
|
||
\strng{authorfullhashraw}{c63a5ee4b2edf1e71712795226de5b1a}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{309-16L stainless steel was deposited over base metal Grade 91 steel (9Cr–1Mo) as buffer layer by shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and flux cored arc welding processes, and then, Stellite 6 (Co–Cr alloy) was coated on stainless steel buffer by SMAW, GTAW and plasma transferred arc welding processes. Stellite 6 coatings were characterized using optical microscope, Vickers hardness tester and optical emission spectrometer, respectively. The FCA deposit has less heat-affected zone and uniform hardness than SMA and GTA deposits. The buffer layer has reduced the formation of any surface cracks and delamination near the fusion zones. The microstructure of Stellite 6 consists of dendrites of Co solid solution and carbides secretion in the interdendrites of Co and Cr matrix. Electron-dispersive spectroscopy line scan has been conducted to analyse the impact of alloying elements in the fusion line and Stellite 6 deposits. It was observed that dilution of Fe in PTA-deposited Stellite 6 was lesser than SMA and GTA deposits and uniform hardness of 600–650~\$\$\textbackslash hbox \{HV\}\_\{0.3\}\$\$was obtained from PTA deposit. The chemical analysis resulted in alloy composition of PTA deposit has nominal percentage in comparison with consumable composition while GTA and SMA deposits has high dilution of Fe and Ni.}
|
||
\field{day}{1}
|
||
\field{issn}{2191-4281}
|
||
\field{journaltitle}{Arabian Journal for Science and Engineering}
|
||
\field{langid}{english}
|
||
\field{month}{5}
|
||
\field{number}{5}
|
||
\field{shortjournal}{Arab J Sci Eng}
|
||
\field{title}{Metallurgical {{Study}} of {{Stellite}} 6 {{Cladding}} on 309-{{16L Stainless Steel}}}
|
||
\field{urlday}{31}
|
||
\field{urlmonth}{3}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{42}
|
||
\field{year}{2017}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{2067\bibrangedash 2074}
|
||
\range{pages}{8}
|
||
\verb{doi}
|
||
\verb 10.1007/s13369-017-2457-7
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/8MQJ3FGI/Ferozhkhan et al. - 2017 - Metallurgical Study of Stellite 6 Cladding on 309-16L Stainless Steel.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1007/s13369-017-2457-7
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1007/s13369-017-2457-7
|
||
\endverb
|
||
\keyw{Dilution,EDS,Hardfacing,Interdendrites,Stellite}
|
||
\endentry
|
||
\entry{pacquentinTemperatureInfluenceRepair2025}{article}{}{}
|
||
\name{author}{5}{}{%
|
||
{{hash=096b7ba62dd31bb3abb4c7daa2ba6477}{%
|
||
family={Pacquentin},
|
||
familyi={P\bibinitperiod},
|
||
given={Wilfried},
|
||
giveni={W\bibinitperiod}}}%
|
||
{{hash=9e420ee86aa957c365d57085e999996c}{%
|
||
family={Wident},
|
||
familyi={W\bibinitperiod},
|
||
given={Pierre},
|
||
giveni={P\bibinitperiod}}}%
|
||
{{hash=268ededdba463184d10a8f5532d5cf81}{%
|
||
family={Varlet},
|
||
familyi={V\bibinitperiod},
|
||
given={Jérôme},
|
||
giveni={J\bibinitperiod}}}%
|
||
{{hash=b24f3669f2a577f8062abf9d04e0e179}{%
|
||
family={Cailloux},
|
||
familyi={C\bibinitperiod},
|
||
given={Thomas},
|
||
giveni={T\bibinitperiod}}}%
|
||
{{hash=ba3f789128096170532622dc53c3bbd0}{%
|
||
family={Maskrot},
|
||
familyi={M\bibinitperiod},
|
||
given={Hicham},
|
||
giveni={H\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{f57606f1b71f32267dc7727ee385b008}
|
||
\strng{fullhash}{0cc41d1605707534d43f79ae97691cbc}
|
||
\strng{fullhashraw}{0cc41d1605707534d43f79ae97691cbc}
|
||
\strng{bibnamehash}{0cc41d1605707534d43f79ae97691cbc}
|
||
\strng{authorbibnamehash}{0cc41d1605707534d43f79ae97691cbc}
|
||
\strng{authornamehash}{f57606f1b71f32267dc7727ee385b008}
|
||
\strng{authorfullhash}{0cc41d1605707534d43f79ae97691cbc}
|
||
\strng{authorfullhashraw}{0cc41d1605707534d43f79ae97691cbc}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Additive manufacturing (AM) is a proven time- and cost-effective method for repairing parts locally damaged after e.g. repetitive friction wear or corrosion. Repairing a hardfacing coating using AM technologies presents however several simultaneous challenges arising from the complex geometry and a high probability of crack formation due to process-induced stress. We address the repair of a cobalt-based Stellite™ 6 hardfacing coating on an AISI 316L substrate performed using Laser Powder Directed Energy Deposition (LP-DED) and investigate the influence of key process features and parameters. We describe our process which successfully prevents crack formation both during and after the repair, highlighting the design of the preliminary part machining phase, induction heating of an extended part volume during the laser repair phase and the optimal scanning strategy. Local characterization using non-destructive testing, Vickers hardness measurements and microstructural examinations by scanning electron microscopy (SEM) show an excellent metallurgical quality of the repair and its interface with the original part. In addition, we introduce an innovative process qualification test assessing the repair quality and innocuity, which is based on the global response to induced cracks and probes the absence of crack attraction by the repair (ACAR11ACAR stands for absence of crack attraction by the repair.). Here this ACAR test reveals a slight difference in mechanical behavior between the repair and the original coating which motivates further work to eventually make the repair imperceptible.}
|
||
\field{day}{1}
|
||
\field{issn}{2666-3309}
|
||
\field{journaltitle}{Journal of Advanced Joining Processes}
|
||
\field{month}{6}
|
||
\field{shortjournal}{Journal of Advanced Joining Processes}
|
||
\field{title}{Temperature Influence on the Repair of a Hardfacing Coating Using Laser Metal Deposition and Assessment of the Repair Innocuity}
|
||
\field{urlday}{31}
|
||
\field{urlmonth}{3}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{11}
|
||
\field{year}{2025}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{100284}
|
||
\range{pages}{1}
|
||
\verb{doi}
|
||
\verb 10.1016/j.jajp.2025.100284
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/VGK54WQB/Pacquentin et al. - 2025 - Temperature influence on the repair of a hardfacing coating using laser metal deposition and assessm.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/XDXCJU4L/S2666330925000056.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S2666330925000056
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S2666330925000056
|
||
\endverb
|
||
\keyw{Additive manufacturing,Direct laser deposition,Hardfacing coating,Mechanical characterization,Repair,Repair innocuity assessment}
|
||
\endentry
|
||
\entry{ratiaComparisonSlidingWear2019}{article}{}{}
|
||
\name{author}{7}{}{%
|
||
{{hash=4d8d77bd60a2e1fd293e809631bc5a84}{%
|
||
family={Ratia},
|
||
familyi={R\bibinitperiod},
|
||
given={Vilma\bibnamedelima L.},
|
||
giveni={V\bibinitperiod\bibinitdelim L\bibinitperiod}}}%
|
||
{{hash=84a91dba5410e2e8f67915c4c17aea08}{%
|
||
family={Zhang},
|
||
familyi={Z\bibinitperiod},
|
||
given={Deen},
|
||
giveni={D\bibinitperiod}}}%
|
||
{{hash=f9e5a7fad20d40241ed0f25f05849207}{%
|
||
family={Carrington},
|
||
familyi={C\bibinitperiod},
|
||
given={Matthew\bibnamedelima J.},
|
||
giveni={M\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
|
||
{{hash=a61a195bd0ed9f39c9d446f02d7b9592}{%
|
||
family={Daure},
|
||
familyi={D\bibinitperiod},
|
||
given={Jaimie\bibnamedelima L.},
|
||
giveni={J\bibinitperiod\bibinitdelim L\bibinitperiod}}}%
|
||
{{hash=d9e3c0caaa2d6903c488a2973cea1fd8}{%
|
||
family={McCartney},
|
||
familyi={M\bibinitperiod},
|
||
given={D.\bibnamedelimi Graham},
|
||
giveni={D\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
|
||
{{hash=d69de7eb40c8f8c0c78825838cd1f8ee}{%
|
||
family={Shipway},
|
||
familyi={S\bibinitperiod},
|
||
given={Philip\bibnamedelima H.},
|
||
giveni={P\bibinitperiod\bibinitdelim H\bibinitperiod}}}%
|
||
{{hash=b150a22a65dc3516b89a2bd86a0e25ff}{%
|
||
family={Stewart},
|
||
familyi={S\bibinitperiod},
|
||
given={David\bibnamedelima A.},
|
||
giveni={D\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{0f5fdf8e51bf5515e4025351773003d8}
|
||
\strng{fullhash}{2e0376be46be3b8d245d5ab5620f4ca2}
|
||
\strng{fullhashraw}{2e0376be46be3b8d245d5ab5620f4ca2}
|
||
\strng{bibnamehash}{2e0376be46be3b8d245d5ab5620f4ca2}
|
||
\strng{authorbibnamehash}{2e0376be46be3b8d245d5ab5620f4ca2}
|
||
\strng{authornamehash}{0f5fdf8e51bf5515e4025351773003d8}
|
||
\strng{authorfullhash}{2e0376be46be3b8d245d5ab5620f4ca2}
|
||
\strng{authorfullhashraw}{2e0376be46be3b8d245d5ab5620f4ca2}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Cobalt-based alloys such as Stellite 3 and Stellite 6 are widely used to protect stainless steel surfaces in primary circuit nuclear reactor applications where high resistance to wear and corrosion are required. In this study, self-mated sliding wear of Stellite 3 and Stellite 6 consolidated by hot isostatic pressing were compared. Tests were performed with a pin-on-disc apparatus enclosed in a water-submerged autoclave environment and wear was measured from room temperature up to 250\,°C (a representative pressurized water reactor environment). Both alloys exhibit a microstructure of micron-sized carbides embedded in a cobalt-rich matrix. Stellite 3 (higher tungsten and carbon content) contains M7C3 and an eta (η) -carbide whereas Stellite 6 contains only M7C3. Furthermore, the former has a significantly higher carbide volume fraction and hardness than the latter. Both alloys show a significant increase in the wear rate as the temperature is increased but Stellite 3 has a higher wear resistance over the entire range; at 250\,°C the wear rate of Stellite 6 is more than five times that of Stellite 3. There is only a minimal formation of a transfer layer on the sliding surfaces but electron backscatter diffraction on cross-sections through the wear scar revealed that wear causes partial transformation of the cobalt matrix from fcc to hcp in both alloys over the entire temperature range. It is proposed that the acceleration of wear with increasing temperature in the range studied is associated with a tribocorrosion mechanism and that the higher carbide fraction in Stellite 3 resulted in its reduced wear rate compared to Stellite 6.}
|
||
\field{day}{30}
|
||
\field{issn}{0043-1648}
|
||
\field{journaltitle}{Wear}
|
||
\field{month}{4}
|
||
\field{series}{22nd {{International Conference}} on {{Wear}} of {{Materials}}}
|
||
\field{shortjournal}{Wear}
|
||
\field{title}{Comparison of the Sliding Wear Behaviour of Self-Mated {{HIPed Stellite}} 3 and {{Stellite}} 6 in a Simulated {{PWR}} Water Environment}
|
||
\field{urlday}{30}
|
||
\field{urlmonth}{6}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{426--427}
|
||
\field{year}{2019}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{1222\bibrangedash 1232}
|
||
\range{pages}{11}
|
||
\verb{doi}
|
||
\verb 10.1016/j.wear.2019.01.116
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/JJY7XQHC/Ratia et al. - 2019 - Comparison of the sliding wear behaviour of self-m.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/VC7Z75QD/S004316481930211X.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S004316481930211X
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S004316481930211X
|
||
\endverb
|
||
\keyw{Cobalt-based alloys,Electron backscatter diffraction,HIP,Nuclear,Stellite}
|
||
\endentry
|
||
\entry{zhangFrictionWearCharacterization2002}{article}{}{}
|
||
\name{author}{2}{}{%
|
||
{{hash=9ac5c6e1891a9d327b6cf9dce9924eaa}{%
|
||
family={Zhang},
|
||
familyi={Z\bibinitperiod},
|
||
given={K},
|
||
giveni={K\bibinitperiod}}}%
|
||
{{hash=cb8741204d7e12b6db11ee35f025c97c}{%
|
||
family={Battiston},
|
||
familyi={B\bibinitperiod},
|
||
given={L},
|
||
giveni={L\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\strng{fullhash}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\strng{fullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\strng{bibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\strng{authorbibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\strng{authornamehash}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\strng{authorfullhash}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\strng{authorfullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{A full-journal submerged bearing test rig was built to evaluate the friction and wear behavior of materials in zinc alloy baths. Some cobalt- and iron-based superalloys were tested using this rig at conditions similar to those of a continuous galvanizing operation (load and bath chemistry). Metallographic and chemical analyses were conducted on tested samples to characterize the wear. It was found that a commonly used cobalt-based material (Stellite \#6) not only suffered considerable wear but also reacted with zinc baths to form intermetallic compounds. Other cobalt- and iron-based superalloys appeared to have negligible reaction with the zinc baths in the short-term tests, but cracks developed in the sub-surface, suggesting that the materials mainly experienced surface fatigue wear. The commonly used cobalt-based superalloy mostly experienced abrasive wear.}
|
||
\field{day}{1}
|
||
\field{issn}{0043-1648}
|
||
\field{journaltitle}{Wear}
|
||
\field{month}{2}
|
||
\field{number}{3}
|
||
\field{shortjournal}{Wear}
|
||
\field{title}{Friction and Wear Characterization of Some Cobalt- and Iron-Based Superalloys in Zinc Alloy Baths}
|
||
\field{urlday}{1}
|
||
\field{urlmonth}{4}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{252}
|
||
\field{year}{2002}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{332\bibrangedash 344}
|
||
\range{pages}{13}
|
||
\verb{doi}
|
||
\verb 10.1016/S0043-1648(01)00889-4
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/WKHXGAXD/Zhang and Battiston - 2002 - Friction and wear characterization of some cobalt- and iron-based superalloys in zinc alloy baths.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/PJJ8KSP9/S0043164801008894.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0043164801008894
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0043164801008894
|
||
\endverb
|
||
\keyw{Friction and wear,Galvanizing,Submerged hardware,Superalloys}
|
||
\endentry
|
||
\entry{ahmedSlidingWearBlended2021a}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
|
||
family={Ahmed},
|
||
familyi={A\bibinitperiod},
|
||
given={R.},
|
||
giveni={R\bibinitperiod}}}%
|
||
{{useprefix=true,hash=75bf7913ab7463c6e3734bec975046fc}{%
|
||
family={Villiers\bibnamedelima Lovelock},
|
||
familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod},
|
||
given={H.\bibnamedelimi L.},
|
||
giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod},
|
||
prefix={de},
|
||
prefixi={d\bibinitperiod}}}%
|
||
{{hash=0e68382b25995f7a55c9b600def7c365}{%
|
||
family={Davies},
|
||
familyi={D\bibinitperiod},
|
||
given={S.},
|
||
giveni={S\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{fullhash}{652318761812c14e2605b641664892df}
|
||
\strng{fullhashraw}{652318761812c14e2605b641664892df}
|
||
\strng{bibnamehash}{652318761812c14e2605b641664892df}
|
||
\strng{authorbibnamehash}{652318761812c14e2605b641664892df}
|
||
\strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{authorfullhash}{652318761812c14e2605b641664892df}
|
||
\strng{authorfullhashraw}{652318761812c14e2605b641664892df}
|
||
\field{extraname}{3}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{This investigation reports on the tribomechanical evaluations of a Co-based alloy obtained by the hot isostatic pressing (HIPing) of a blend of two standard gas atomized cobalt alloy powders. A HIPed blend of Stellite 6 and Stellite 20 was used to investigate the effect of varying the C, Cr, and W content simultaneously on the structure-property relationships. Microstructural evaluations involved scanning electron microscopy and x-ray diffraction. Experimental evaluations were conducted using hardness, impact, tensile, abrasive wear and sliding wear tests to develop an understanding of the mechanical and tribological performance of the alloys. Results are discussed in terms of the failure modes for the mechanical tests, and wear mechanisms for the tribological tests. This study indicates that powder blends can be used to design for a desired combination of mechanical strength and wear properties in these HIPed alloys. Specific relationships were observed between the alloy composition and carbide content, hardness, impact energy and wear resistance. There was a linear relationship between the weighted W- and C-content and the carbide fraction. The abrasive wear performance also showed a linear relationship with the weighted alloy composition. The pin-on-disc and ball-on-flat experiments revealed a more complex relationship between the alloy composition and the wear rate.}
|
||
\field{day}{15}
|
||
\field{issn}{0043-1648}
|
||
\field{journaltitle}{Wear}
|
||
\field{month}{2}
|
||
\field{shortjournal}{Wear}
|
||
\field{title}{Sliding Wear of Blended Cobalt Based Alloys}
|
||
\field{urlday}{13}
|
||
\field{urlmonth}{7}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{466--467}
|
||
\field{year}{2021}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{203533}
|
||
\range{pages}{1}
|
||
\verb{doi}
|
||
\verb 10.1016/j.wear.2020.203533
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/SHE6JT9G/Ahmed et al. - 2021 - Sliding wear of blended cobalt based alloys.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/KQ8WAAHY/S0043164820309923.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0043164820309923
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0043164820309923
|
||
\endverb
|
||
\keyw{Blending,Hardness,HIPing,Powder metallurgy,Sliding wear,Stellite alloy}
|
||
\endentry
|
||
\entry{crookCobaltbaseAlloysResist1994}{article}{}{}
|
||
\name{author}{1}{}{%
|
||
{{hash=16985215fbfc4124567154cd4ca61487}{%
|
||
family={Crook},
|
||
familyi={C\bibinitperiod},
|
||
given={P},
|
||
giveni={P\bibinitperiod}}}%
|
||
}
|
||
\list{location}{1}{%
|
||
{Materials Park, OH}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{ASM International}%
|
||
}
|
||
\strng{namehash}{16985215fbfc4124567154cd4ca61487}
|
||
\strng{fullhash}{16985215fbfc4124567154cd4ca61487}
|
||
\strng{fullhashraw}{16985215fbfc4124567154cd4ca61487}
|
||
\strng{bibnamehash}{16985215fbfc4124567154cd4ca61487}
|
||
\strng{authorbibnamehash}{16985215fbfc4124567154cd4ca61487}
|
||
\strng{authornamehash}{16985215fbfc4124567154cd4ca61487}
|
||
\strng{authorfullhash}{16985215fbfc4124567154cd4ca61487}
|
||
\strng{authorfullhashraw}{16985215fbfc4124567154cd4ca61487}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{issn}{0882-7958}
|
||
\field{journaltitle}{Cobalt-base alloys resist wear, corrosion, and heat}
|
||
\field{number}{4}
|
||
\field{shortjournal}{Adv. mater. process}
|
||
\field{title}{Cobalt-Base Alloys Resist Wear, Corrosion, and Heat}
|
||
\field{volume}{145}
|
||
\field{year}{1994}
|
||
\field{dateera}{ce}
|
||
\field{pages}{27\bibrangedash 30}
|
||
\range{pages}{4}
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/HH93QB32/index.html
|
||
\endverb
|
||
\endentry
|
||
\entry{frenkMicrostructuralEffectsSliding1994}{article}{}{}
|
||
\name{author}{2}{}{%
|
||
{{hash=6e61e4cc50de7f0f6f6fa42dce1a72c1}{%
|
||
family={Frenk},
|
||
familyi={F\bibinitperiod},
|
||
given={A.},
|
||
giveni={A\bibinitperiod}}}%
|
||
{{hash=38d34d9973e4cdc0ed305fca9bfc6034}{%
|
||
family={Kurz},
|
||
familyi={K\bibinitperiod},
|
||
given={W.},
|
||
giveni={W\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{1470295c00338871700e4ccaea4e2085}
|
||
\strng{fullhash}{1470295c00338871700e4ccaea4e2085}
|
||
\strng{fullhashraw}{1470295c00338871700e4ccaea4e2085}
|
||
\strng{bibnamehash}{1470295c00338871700e4ccaea4e2085}
|
||
\strng{authorbibnamehash}{1470295c00338871700e4ccaea4e2085}
|
||
\strng{authornamehash}{1470295c00338871700e4ccaea4e2085}
|
||
\strng{authorfullhash}{1470295c00338871700e4ccaea4e2085}
|
||
\strng{authorfullhashraw}{1470295c00338871700e4ccaea4e2085}
|
||
\field{sortinit}{7}
|
||
\field{sortinithash}{108d0be1b1bee9773a1173443802c0a3}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{The influence of the microstructure on the dry sliding wear resistance of a hypo-eutectic Stellite 6 alloy was investigated under conditions leading to severe metallic wear of the hardfacing alloy. Conventional chill casting as well as laser surface cladding were used to produce a wide range of solidification microstructures. The hardness of the alloy was strongly dependent on the microstructure and in particular on the size of the dendrites. Under the sliding conditions investigated, severe delamination wear of the Stellite occurred. High coefficients of friction were measured and the structure in the subsurface was completely destroyed by the resulting stress cycles. During the stationary wear regime, no dependence of the wear rate on the as-solidified microstructure could therefore be determined. However, a strong influence on the wear resistance of alloying elements which affect the matrix properties was observed. Suggestions are made for the improvement of the wear resistance of such alloys under similar sliding conditions.}
|
||
\field{day}{1}
|
||
\field{issn}{0043-1648}
|
||
\field{journaltitle}{Wear}
|
||
\field{month}{5}
|
||
\field{number}{1}
|
||
\field{shortjournal}{Wear}
|
||
\field{title}{Microstructural Effects on the Sliding Wear Resistance of a Cobalt-Based Alloy}
|
||
\field{urlday}{18}
|
||
\field{urlmonth}{2}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{174}
|
||
\field{year}{1994}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{81\bibrangedash 91}
|
||
\range{pages}{11}
|
||
\verb{doi}
|
||
\verb 10.1016/0043-1648(94)90089-2
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/JPPU3LEM/Frenk and Kurz - 1994 - Microstructural effects on the sliding wear resistance of a cobalt-based alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/BRB89HRA/0043164894900892.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/0043164894900892
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/0043164894900892
|
||
\endverb
|
||
\endentry
|
||
\entry{kurlovPhaseEquilibriaWC2006}{article}{}{}
|
||
\name{author}{2}{}{%
|
||
{{hash=81b5de54503bbe1400cc43150bf88ee0}{%
|
||
family={Kurlov},
|
||
familyi={K\bibinitperiod},
|
||
given={Aleksei\bibnamedelima S},
|
||
giveni={A\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
|
||
{{hash=80fdf27dcae1c9884610861bac26c035}{%
|
||
family={Gusev},
|
||
familyi={G\bibinitperiod},
|
||
given={Aleksandr\bibnamedelima I},
|
||
giveni={A\bibinitperiod\bibinitdelim I\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{ac412d155faedc2a016852b600a56787}
|
||
\strng{fullhash}{ac412d155faedc2a016852b600a56787}
|
||
\strng{fullhashraw}{ac412d155faedc2a016852b600a56787}
|
||
\strng{bibnamehash}{ac412d155faedc2a016852b600a56787}
|
||
\strng{authorbibnamehash}{ac412d155faedc2a016852b600a56787}
|
||
\strng{authornamehash}{ac412d155faedc2a016852b600a56787}
|
||
\strng{authorfullhash}{ac412d155faedc2a016852b600a56787}
|
||
\strng{authorfullhashraw}{ac412d155faedc2a016852b600a56787}
|
||
\field{sortinit}{1}
|
||
\field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{day}{31}
|
||
\field{issn}{0036-021X, 1468-4837}
|
||
\field{journaltitle}{Russian Chemical Reviews}
|
||
\field{langid}{english}
|
||
\field{month}{7}
|
||
\field{number}{7}
|
||
\field{shortjournal}{Russ. Chem. Rev.}
|
||
\field{title}{Phase Equilibria in the {{W}}–{{C}} System and Tungsten Carbides}
|
||
\field{urlday}{11}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{75}
|
||
\field{year}{2006}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{617\bibrangedash 636}
|
||
\range{pages}{20}
|
||
\verb{doi}
|
||
\verb 10.1070/RC2006v075n07ABEH003606
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ZL88KH8R/Kurlov and Gusev - 2006 - Phase equilibria in the W–C system and tungsten carbides.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://iopscience.iop.org/article/10.1070/RC2006v075n07ABEH003606
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://iopscience.iop.org/article/10.1070/RC2006v075n07ABEH003606
|
||
\endverb
|
||
\endentry
|
||
\entry{jiangSecondaryM6CPrecipitation1999}{article}{}{}
|
||
\name{author}{4}{}{%
|
||
{{hash=d9d58491faaa13ecce7cd5155a2b929f}{%
|
||
family={Jiang},
|
||
familyi={J\bibinitperiod},
|
||
given={W.\bibnamedelimi H.},
|
||
giveni={W\bibinitperiod\bibinitdelim H\bibinitperiod}}}%
|
||
{{hash=291b68d2c2ebf48cf77a050ffd8f8444}{%
|
||
family={Yao},
|
||
familyi={Y\bibinitperiod},
|
||
given={X.\bibnamedelimi D.},
|
||
giveni={X\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
|
||
{{hash=029387509757fb046df75be07bbd81e9}{%
|
||
family={Guan},
|
||
familyi={G\bibinitperiod},
|
||
given={H.\bibnamedelimi R.},
|
||
giveni={H\bibinitperiod\bibinitdelim R\bibinitperiod}}}%
|
||
{{hash=e5f9ab8233de71b108b877651a998b5e}{%
|
||
family={Hu},
|
||
familyi={H\bibinitperiod},
|
||
given={Z.\bibnamedelimi Q.},
|
||
giveni={Z\bibinitperiod\bibinitdelim Q\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{5e3a7c730ab396105ad65c76237874db}
|
||
\strng{fullhash}{143e39b3cd7e5dc5f90c2e7ae689ab02}
|
||
\strng{fullhashraw}{143e39b3cd7e5dc5f90c2e7ae689ab02}
|
||
\strng{bibnamehash}{143e39b3cd7e5dc5f90c2e7ae689ab02}
|
||
\strng{authorbibnamehash}{143e39b3cd7e5dc5f90c2e7ae689ab02}
|
||
\strng{authornamehash}{5e3a7c730ab396105ad65c76237874db}
|
||
\strng{authorfullhash}{143e39b3cd7e5dc5f90c2e7ae689ab02}
|
||
\strng{authorfullhashraw}{143e39b3cd7e5dc5f90c2e7ae689ab02}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{day}{1}
|
||
\field{issn}{1573-4811}
|
||
\field{journaltitle}{Journal of Materials Science Letters}
|
||
\field{langid}{english}
|
||
\field{month}{2}
|
||
\field{number}{4}
|
||
\field{shortjournal}{Journal of Materials Science Letters}
|
||
\field{title}{Secondary {{M6C Precipitation}} in a {{Cobalt}}–Base {{Superalloy}}}
|
||
\field{urlday}{12}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{18}
|
||
\field{year}{1999}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{303\bibrangedash 305}
|
||
\range{pages}{3}
|
||
\verb{doi}
|
||
\verb 10.1023/A:1006627122234
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/N6YF5UBN/Jiang et al. - 1999 - Secondary M6C Precipitation in a Cobalt–base Superalloy.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1023/A:1006627122234
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1023/A:1006627122234
|
||
\endverb
|
||
\keyw{Base Superalloy,Cobalt,Polymer,Polymers,Precipitation}
|
||
\endentry
|
||
\entry{mohammadnezhadInsightMicrostructureCharacterization}{article}{}{}
|
||
\name{author}{5}{}{%
|
||
{{hash=ce17a687d3cf71567f6451754819e860}{%
|
||
family={Mohammadnezhad},
|
||
familyi={M\bibinitperiod},
|
||
given={Mahyar},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=2150654f7a1bde258523fe8d92bcf33a}{%
|
||
family={Javaheri},
|
||
familyi={J\bibinitperiod},
|
||
given={Vahid},
|
||
giveni={V\bibinitperiod}}}%
|
||
{{hash=1e57873f843da5ff4b079bee17da8f7e}{%
|
||
family={Shamanian},
|
||
familyi={S\bibinitperiod},
|
||
given={Morteza},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=0fbdf41677d07dc6c7dd4b03ea1330ff}{%
|
||
family={Rizaneh},
|
||
familyi={R\bibinitperiod},
|
||
given={Shahram},
|
||
giveni={S\bibinitperiod}}}%
|
||
{{hash=eb8332718f25e6ba7bbd52efbaeef40c}{%
|
||
family={Szpunar},
|
||
familyi={S\bibinitperiod},
|
||
given={Jerzy\bibnamedelima A},
|
||
giveni={J\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{5993e914921b7c26e8a60d547e9d3c29}
|
||
\strng{fullhash}{7d81598803b321669a3a68dbed902fff}
|
||
\strng{fullhashraw}{7d81598803b321669a3a68dbed902fff}
|
||
\strng{bibnamehash}{7d81598803b321669a3a68dbed902fff}
|
||
\strng{authorbibnamehash}{7d81598803b321669a3a68dbed902fff}
|
||
\strng{authornamehash}{5993e914921b7c26e8a60d547e9d3c29}
|
||
\strng{authorfullhash}{7d81598803b321669a3a68dbed902fff}
|
||
\strng{authorfullhashraw}{7d81598803b321669a3a68dbed902fff}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Heat-resistant steels of HP series (Fe-25Cr-35Ni) are used in high temperature structural applications. Their composition include Nb as strong carbide former. Electron Backscatter Diffraction (EBSD) investigations revealed that, in the as-cast condition, alloys exhibit austenitic matrix with intergranular primary carbides such as MC, M23C6 and/or M7C3. During exposure at a high temperature, phase transformations occurred: chromium carbides of M7C3 type transform into the more stable M23C6 type, intergranular M23C6 carbides precipitate, and Lave phase due to increase of Niobium activity with temperature increase, as thermodynamic simulation confirmed. Therefore, combination of EBSD-EDS technique with thermodynamic calculation is one of the novel and most accurate method to investigation of phase transformation, as the precipitations are identified on the basis of their crystal structure, chemical composition and their thermodynamic features.}
|
||
\field{langid}{english}
|
||
\field{title}{Insight to the {{Microstructure Characterization}} of a {{HP Austenitic Heat Resistant Steel}} after {{Long-term Service Exposure}}}
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/YVVLS5HZ/Mohammadnezhad et al. - Insight to the Microstructure Characterization of a HP Austenitic Heat Resistant Steel after Long-te.pdf
|
||
\endverb
|
||
\keyw{Austenitic heat resistant steels,chromium carbide,EBSD,Laves phase,thermodynamic simulation}
|
||
\endentry
|
||
\entry{antonyWearResistantCobaltBaseAlloys1983}{article}{}{}
|
||
\name{author}{1}{}{%
|
||
{{hash=17e055c732c247aed51d17d45a9665ce}{%
|
||
family={Antony},
|
||
familyi={A\bibinitperiod},
|
||
given={Kenneth\bibnamedelima C.},
|
||
giveni={K\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{17e055c732c247aed51d17d45a9665ce}
|
||
\strng{fullhash}{17e055c732c247aed51d17d45a9665ce}
|
||
\strng{fullhashraw}{17e055c732c247aed51d17d45a9665ce}
|
||
\strng{bibnamehash}{17e055c732c247aed51d17d45a9665ce}
|
||
\strng{authorbibnamehash}{17e055c732c247aed51d17d45a9665ce}
|
||
\strng{authornamehash}{17e055c732c247aed51d17d45a9665ce}
|
||
\strng{authorfullhash}{17e055c732c247aed51d17d45a9665ce}
|
||
\strng{authorfullhashraw}{17e055c732c247aed51d17d45a9665ce}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Cobalt-base alloys have enjoyed extensive use in wear-related engineering applications for well over 50 years because of their inherent high-strength, corrosion resistance, and ability to retain hardness at elevated temperatures. Microstructurally, wear-resistant cobalt-base alloys consist of hard particles (Cr7C3) dispersed in cobalt-rich (Co {$>$} 50\%) solid solution matrix alloys (generally Co-Cr-W/Mo). Recent investigations in the Cabot Corporation Technology Laboratories have shown that the adhesive and cavitation-erosion wear characteristics of these alloys are determined by the composition of the matrix alloy and are influenced to a large extent by a strain-induce fee → hep allotropie transformation in the matrix alloy. Further, it has been shown that the cobalt content in the matrix alloy can be decreased to approximately 30\% without significantly degrading relevant wear or corrosion properties. Toughness and abrasive wear resistance, on the other hand, are determined primarily by carbide volume fraction and morphology. Large, hypereutectic carbides are generally preferred for good abrasive wear resistance but are detrimental to toughness considerations. The tribological measurements and microstructural correlations associated with these Cabot investigations are summarized and discussed in this paper.}
|
||
\field{day}{1}
|
||
\field{issn}{1543-1851}
|
||
\field{journaltitle}{JOM}
|
||
\field{langid}{english}
|
||
\field{month}{2}
|
||
\field{number}{2}
|
||
\field{shortjournal}{JOM}
|
||
\field{title}{Wear-{{Resistant Cobalt-Base Alloys}}}
|
||
\field{urlday}{13}
|
||
\field{urlmonth}{7}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{35}
|
||
\field{year}{1983}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{52\bibrangedash 60}
|
||
\range{pages}{9}
|
||
\verb{doi}
|
||
\verb 10.1007/BF03338205
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/5S6M84KB/Antony - 1983 - Wear-Resistant Cobalt-Base Alloys.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1007/BF03338205
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1007/BF03338205
|
||
\endverb
|
||
\keyw{Abrasive Wear,Abrasive Wear Resistance,Adhesive Wear,Allotropic Transformation,Carbide Morphology}
|
||
\endentry
|
||
\entry{mcintyreXRayPhotoelectronSpectroscopic1979}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=df2bb06cbe95e9faaa65206f72765216}{%
|
||
family={McIntyre},
|
||
familyi={M\bibinitperiod},
|
||
given={N.\bibnamedelimi S.},
|
||
giveni={N\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
|
||
{{hash=fc9097282acc465dc58d590fcf3d4b96}{%
|
||
family={Zetaruk},
|
||
familyi={Z\bibinitperiod},
|
||
given={D.},
|
||
giveni={D\bibinitperiod}}}%
|
||
{{hash=8bd8e44b953aeb5c525be802ec5059ca}{%
|
||
family={Murphy},
|
||
familyi={M\bibinitperiod},
|
||
given={E.\bibnamedelimi V.},
|
||
giveni={E\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{4004ff1796f3e3adf525777927c4246d}
|
||
\strng{fullhash}{7ec7642f1ad7533a0152b1301c3bdb83}
|
||
\strng{fullhashraw}{7ec7642f1ad7533a0152b1301c3bdb83}
|
||
\strng{bibnamehash}{7ec7642f1ad7533a0152b1301c3bdb83}
|
||
\strng{authorbibnamehash}{7ec7642f1ad7533a0152b1301c3bdb83}
|
||
\strng{authornamehash}{4004ff1796f3e3adf525777927c4246d}
|
||
\strng{authorfullhash}{7ec7642f1ad7533a0152b1301c3bdb83}
|
||
\strng{authorfullhashraw}{7ec7642f1ad7533a0152b1301c3bdb83}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{The aqueous oxidation of the cobalt allow Stellite-6 has been studied in pH 10 water 285°C, as a function of dissolved oxygen concentration and length of exposure time. The result surface films were analysed by X-ray photoelectron spectroscopy (XPS) and other techniques. Using XPS, a quantitative measurement of the oxide and metallic surface components was obtained and depth-concentration profiles were determined. The effect of gaseous oxidation on the surface composition was also studied, and from a comparison of the oxidation behaviour under aqueous and gas phase conditions, solid state and solution-transport processes could be distinguished. The gas phase studies showed that cobalt ions diffuse preferentially to the outer surface. During aqueous oxidation, however, the surface composition is found to be depleted in cobalt; preferential dissolution of the cobalt component of the alloy is therefore occurring under these aqueous conditions.}
|
||
\field{issn}{1096-9918}
|
||
\field{journaltitle}{Surface and Interface Analysis}
|
||
\field{langid}{english}
|
||
\field{number}{4}
|
||
\field{title}{X-{{Ray}} Photoelectron Spectroscopic Study of the Aqueous Oxidation of Stellite-6 Alloy}
|
||
\field{urlday}{11}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{1}
|
||
\field{year}{1979}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{105\bibrangedash 110}
|
||
\range{pages}{6}
|
||
\verb{doi}
|
||
\verb 10.1002/sia.740010402
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/H7GU9357/sia.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.740010402
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.740010402
|
||
\endverb
|
||
\endentry
|
||
\entry{cesanekDeteriorationLocalMechanical2015}{article}{}{}
|
||
\name{author}{5}{}{%
|
||
{{hash=e14661379f9189356b0882960baa4105}{%
|
||
family={Česánek},
|
||
familyi={Č\bibinitperiod},
|
||
given={Zdeněk},
|
||
giveni={Z\bibinitperiod}}}%
|
||
{{hash=93d52e6b0aef9925e3819b80882a6cda}{%
|
||
family={Schubert},
|
||
familyi={S\bibinitperiod},
|
||
given={Jan},
|
||
giveni={J\bibinitperiod}}}%
|
||
{{hash=31762ba844a6f927048cfe7931b05d7c}{%
|
||
family={Houdková},
|
||
familyi={H\bibinitperiod},
|
||
given={Šárka},
|
||
giveni={Š\bibinitperiod}}}%
|
||
{{hash=d9b21b75ed40962f06b7546c1f3597b4}{%
|
||
family={Bláhová},
|
||
familyi={B\bibinitperiod},
|
||
given={Olga},
|
||
giveni={O\bibinitperiod}}}%
|
||
{{hash=d2a08a1028ba73a0fd73b485d73d0037}{%
|
||
family={Prantnerová},
|
||
familyi={P\bibinitperiod},
|
||
given={Michaela},
|
||
giveni={M\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{Trans Tech Publications Ltd}%
|
||
}
|
||
\strng{namehash}{0aa8f9e0af245f5af3aaf91e7be37e8f}
|
||
\strng{fullhash}{9f9eaf92f70912e02b4d02160a62f72d}
|
||
\strng{fullhashraw}{9f9eaf92f70912e02b4d02160a62f72d}
|
||
\strng{bibnamehash}{9f9eaf92f70912e02b4d02160a62f72d}
|
||
\strng{authorbibnamehash}{9f9eaf92f70912e02b4d02160a62f72d}
|
||
\strng{authornamehash}{0aa8f9e0af245f5af3aaf91e7be37e8f}
|
||
\strng{authorfullhash}{9f9eaf92f70912e02b4d02160a62f72d}
|
||
\strng{authorfullhashraw}{9f9eaf92f70912e02b4d02160a62f72d}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Coating properties determine its behavior in operation. The simulation of future operational conditions is therefore the best quality test. The evaluation during operation is usually not possible to perform, and the coatings are therefore frequently characterized by their physical or mechanical properties. This text deals with the high temperature corrosion of HVOF sprayed Stellite 6 coating and with changes of its local mechanical properties before and after the corrosion testing. High temperature corrosion is defined as a corrosion in the presence of molten salts. In this case, the mixture of salts in composition of 59\% Na2(SO)4 with 34.5\% KCl and 6.5\% NaCl was used. Two exposure temperatures 525 °C and 575 °C were selected and the tests for both temperatures were performed in the time interval of 168h in the autoclave. The coating with salt mixture layer was analyzed using scanning electron microscopy and nanoindentation. The high temperature resistance of Stellite 6 coating was evaluated according to the changes in the coating surface and by the occurrence of individual phases formed on the coating surface during the test. Generally, it can be said that the Stellite 6 alloys deposited by HVOF technology show selective oxidation under the salt film. This fact was also proved in this study. Furthermore, the nanoindentation measurements of Stellite 6 coating were performed before and after the corrosion testing. These measurements were used to evaluate the change of local mechanical coating properties.}
|
||
\field{issn}{1662-9795}
|
||
\field{journaltitle}{Key Engineering Materials}
|
||
\field{langid}{english}
|
||
\field{title}{Deterioration of {{Local Mechanical Properties}} of {{HVOF-Sprayed Stellite}} 6 after {{Exposure}} to {{High-Temperature Corrosion}}}
|
||
\field{urlday}{11}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{662}
|
||
\field{year}{2015}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{115\bibrangedash 118}
|
||
\range{pages}{4}
|
||
\verb{doi}
|
||
\verb 10.4028/www.scientific.net/KEM.662.115
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/PSDLCDNA/Česánek et al. - 2015 - Deterioration of Local Mechanical Properties of HVOF-Sprayed Stellite 6 after Exposure to High-Tempe.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.scientific.net/KEM.662.115
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.scientific.net/KEM.662.115
|
||
\endverb
|
||
\endentry
|
||
\entry{heathcockCavitationErosionCobaltbased1981}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=43bde4e6774ef6c551b54aadd6f79600}{%
|
||
family={Heathcock},
|
||
familyi={H\bibinitperiod},
|
||
given={C.\bibnamedelimi J.},
|
||
giveni={C\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
|
||
{{hash=d948b40247ea691a1acb168206ae787e}{%
|
||
family={Ball},
|
||
familyi={B\bibinitperiod},
|
||
given={A.},
|
||
giveni={A\bibinitperiod}}}%
|
||
{{hash=bf26727ce8e6c3532d46e05477fa24db}{%
|
||
family={Protheroe},
|
||
familyi={P\bibinitperiod},
|
||
given={B.\bibnamedelimi E.},
|
||
giveni={B\bibinitperiod\bibinitdelim E\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{40f4b0918469d6956e64035680378bae}
|
||
\strng{fullhash}{69bcad4fe8cd5cb52682f2ccb1e9db62}
|
||
\strng{fullhashraw}{69bcad4fe8cd5cb52682f2ccb1e9db62}
|
||
\strng{bibnamehash}{69bcad4fe8cd5cb52682f2ccb1e9db62}
|
||
\strng{authorbibnamehash}{69bcad4fe8cd5cb52682f2ccb1e9db62}
|
||
\strng{authornamehash}{40f4b0918469d6956e64035680378bae}
|
||
\strng{authorfullhash}{69bcad4fe8cd5cb52682f2ccb1e9db62}
|
||
\strng{authorfullhashraw}{69bcad4fe8cd5cb52682f2ccb1e9db62}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{A number of Stellite® alloys, cemented carbides and surface-treated alloy steels have been evaluated for erosion resistance. The ability of the Stellite alloys to withstand erosion is primarily a function of the cobalt-rich solid solution phase while erosion of cemented carbides is controlled predominantly by the binder phase. The nickel-based tungsten carbides are more resistant to erosion than the cobalt-based samples. Investigation of industrial surface treatments has demonstrated that erosion rates of hardened low alloy steels can be improved. For example, a hardened electroless nickel coating on BS 817M40 steel erodes at one-third the rate of uncoated BS 817M40 steel. A Tufftriding treatment, which is a proprietary method of carbonitriding, applied to the same steel caused a similar improvement in performance but only after an initial loss of the compound layer. Hard chrome coating is, in general, less effective than the above treatments in combating cavitation erosion.}
|
||
\field{day}{8}
|
||
\field{issn}{0043-1648}
|
||
\field{journaltitle}{Wear}
|
||
\field{month}{12}
|
||
\field{number}{1}
|
||
\field{shortjournal}{Wear}
|
||
\field{title}{Cavitation Erosion of Cobalt-Based {{Stellite}}® Alloys, Cemented Carbides and Surface-Treated Low Alloy Steels}
|
||
\field{urlday}{5}
|
||
\field{urlmonth}{2}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{74}
|
||
\field{year}{1981}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{11\bibrangedash 26}
|
||
\range{pages}{16}
|
||
\verb{doi}
|
||
\verb 10.1016/0043-1648(81)90191-5
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/N8SJC7IY/Heathcock et al. - 1981 - Cavitation erosion of cobalt-based Stellite® alloys, cemented carbides and surface-treated low alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/L94DZHNT/0043164881901915.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/0043164881901915
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/0043164881901915
|
||
\endverb
|
||
\endentry
|
||
\entry{francCavitationErosion2005}{incollection}{}{}
|
||
\name{editor}{2}{}{%
|
||
{{hash=82466166f53e07ad9568dba9555563e7}{%
|
||
family={Franc},
|
||
familyi={F\bibinitperiod},
|
||
given={Jean-Pierre},
|
||
giveni={J\bibinithyphendelim P\bibinitperiod}}}%
|
||
{{hash=441eced1863753c712f0eaa788cbc3d5}{%
|
||
family={Michel},
|
||
familyi={M\bibinitperiod},
|
||
given={Jean-Marie},
|
||
giveni={J\bibinithyphendelim M\bibinitperiod}}}%
|
||
}
|
||
\list{location}{1}{%
|
||
{Dordrecht}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{Springer Netherlands}%
|
||
}
|
||
\strng{namehash}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\strng{fullhash}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\strng{fullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\strng{bibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\strng{editorbibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\strng{editornamehash}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\strng{editorfullhash}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\strng{editorfullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{editor}
|
||
\field{labeltitlesource}{title}
|
||
\field{booktitle}{Fundamentals of {{Cavitation}}}
|
||
\field{isbn}{978-1-4020-2233-3}
|
||
\field{langid}{english}
|
||
\field{title}{Cavitation {{Erosion}}}
|
||
\field{urlday}{13}
|
||
\field{urlmonth}{4}
|
||
\field{urlyear}{2025}
|
||
\field{year}{2005}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{265\bibrangedash 291}
|
||
\range{pages}{27}
|
||
\verb{doi}
|
||
\verb 10.1007/1-4020-2233-6_12
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/CSDY4477/Franc and Michel - 2005 - Cavitation Erosion.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1007/1-4020-2233-6_12
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1007/1-4020-2233-6_12
|
||
\endverb
|
||
\keyw{Acoustic Impedance,Adverse Pressure Gradient,Mass Loss Rate,Pressure Pulse,Solid Wall}
|
||
\endentry
|
||
\entry{romoCavitationHighvelocitySlurry2012}{article}{}{}
|
||
\name{author}{4}{}{%
|
||
{{hash=abd07783347fdc165942b01479e16afb}{%
|
||
family={Romo},
|
||
familyi={R\bibinitperiod},
|
||
given={S.A.},
|
||
giveni={S\bibinitperiod}}}%
|
||
{{hash=9c9837ed5fce5c7a1aeb233aa99aa04d}{%
|
||
family={Santa},
|
||
familyi={S\bibinitperiod},
|
||
given={J.F.},
|
||
giveni={J\bibinitperiod}}}%
|
||
{{hash=fecaae68172b53756247ca68af700ed9}{%
|
||
family={Giraldo},
|
||
familyi={G\bibinitperiod},
|
||
given={J.E.},
|
||
giveni={J\bibinitperiod}}}%
|
||
{{hash=467faf266d1206e4566fe6d0465b33f0}{%
|
||
family={Toro},
|
||
familyi={T\bibinitperiod},
|
||
given={A.},
|
||
giveni={A\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{285bcf9d2b83436d537b5e21b7fde046}
|
||
\strng{fullhash}{e0312588d226589c879f5d182ca350e9}
|
||
\strng{fullhashraw}{e0312588d226589c879f5d182ca350e9}
|
||
\strng{bibnamehash}{e0312588d226589c879f5d182ca350e9}
|
||
\strng{authorbibnamehash}{e0312588d226589c879f5d182ca350e9}
|
||
\strng{authornamehash}{285bcf9d2b83436d537b5e21b7fde046}
|
||
\strng{authorfullhash}{e0312588d226589c879f5d182ca350e9}
|
||
\strng{authorfullhashraw}{e0312588d226589c879f5d182ca350e9}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{The cavitation and slurry erosion resistances of Stellite 6 coatings and 13-4 stainless steel were compared in laboratory. The Cavitation Resistance (CR) was measured according to ASTM G32 standard and the Slurry Erosion Resistance (SER) was tested in a high-velocity erosion tester under several impact angles. The results showed that the coatings improved the CR 15 times when compared to bare stainless steel. The SER of the coatings was also higher for all the impingement angles tested, the highest erosion rate being observed at 45°. The main wear mechanisms were micro-cracking (cavitation tests), and micro-cutting and micro-ploughing (slurry erosion tests). © 2011 Elsevier Ltd. All rights reserved.}
|
||
\field{issn}{0301679X (ISSN)}
|
||
\field{journaltitle}{Tribology International}
|
||
\field{langid}{english}
|
||
\field{shortjournal}{Tribol Int}
|
||
\field{title}{Cavitation and High-Velocity Slurry Erosion Resistance of Welded {{Stellite}} 6 Alloy}
|
||
\field{volume}{47}
|
||
\field{year}{2012}
|
||
\field{dateera}{ce}
|
||
\field{pages}{16\bibrangedash 24}
|
||
\range{pages}{9}
|
||
\verb{doi}
|
||
\verb 10.1016/j.triboint.2011.10.003
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/FV5E6CE9/Romo et al. - 2012 - Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/GSRI4IEV/S0301679X11002866.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856240362&doi=10.1016%2fj.triboint.2011.10.003&partnerID=40&md5=77bc5b529937543083c683cc6f5d689d
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856240362&doi=10.1016%2fj.triboint.2011.10.003&partnerID=40&md5=77bc5b529937543083c683cc6f5d689d
|
||
\endverb
|
||
\keyw{alloy,Cavitation,Cavitation corrosion,Cavitation erosion,Cavitation resistance,Cerium alloys,Chromate coatings,Erosion,Erosion rates,High velocity,Impact angles,Impact resistance,Impingement angle,Micro-cutting,Slurry erosion,Stainless steel,Stellite,Stellite 6,Stellite 6 alloy,Stellite 6 coating,Tribology,Wear mechanisms}
|
||
\endentry
|
||
\entry{gevariDirectIndirectThermal2020}{article}{}{}
|
||
\name{author}{5}{}{%
|
||
{{hash=93d9cff817608f96c206941face4c5d7}{%
|
||
family={Gevari},
|
||
familyi={G\bibinitperiod},
|
||
given={Moein\bibnamedelima Talebian},
|
||
giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod}}}%
|
||
{{hash=e271948379fd6fee4bd30a4d576761b8}{%
|
||
family={Abbasiasl},
|
||
familyi={A\bibinitperiod},
|
||
given={Taher},
|
||
giveni={T\bibinitperiod}}}%
|
||
{{hash=67d0558f57dbf7548b5b43a80b85f47f}{%
|
||
family={Niazi},
|
||
familyi={N\bibinitperiod},
|
||
given={Soroush},
|
||
giveni={S\bibinitperiod}}}%
|
||
{{hash=efb87c095e41c6349ba97d939982e130}{%
|
||
family={Ghorbani},
|
||
familyi={G\bibinitperiod},
|
||
given={Morteza},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=311cf929c32c6c2ce5aa2728ae09ad47}{%
|
||
family={Koşar},
|
||
familyi={K\bibinitperiod},
|
||
given={Ali},
|
||
giveni={A\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{76843143b68c90c6ac5d9d854fd56c1f}
|
||
\strng{fullhash}{7e654139b427bf36f3a25a5848105f5b}
|
||
\strng{fullhashraw}{7e654139b427bf36f3a25a5848105f5b}
|
||
\strng{bibnamehash}{7e654139b427bf36f3a25a5848105f5b}
|
||
\strng{authorbibnamehash}{7e654139b427bf36f3a25a5848105f5b}
|
||
\strng{authornamehash}{76843143b68c90c6ac5d9d854fd56c1f}
|
||
\strng{authorfullhash}{7e654139b427bf36f3a25a5848105f5b}
|
||
\strng{authorfullhashraw}{7e654139b427bf36f3a25a5848105f5b}
|
||
\field{sortinit}{4}
|
||
\field{sortinithash}{9381316451d1b9788675a07e972a12a7}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{shorttitle}
|
||
\field{abstract}{The phase change phenomenon in fluids as a result of low local pressure under a critical value is known as cavitation. Acoustic wave propagation or hydrodynamic pressure drop of the working fluid are the main reasons for inception of this phenomenon. Considering the released energy from the collapsing cavitation bubbles as a reliable source has led to its implementation to different fields, namely, heat transfer, surface cleaning and fouling, water treatment, food industry, chemical reactions, energy harvesting. A considerable amount of energy in the mentioned industries is required for thermal applications. Cavitation could serve for minimizing the energy demand and optimizing the processes. Thus, the energy efficiency of the systems could be significantly enhanced. This review article focuses on the direct and indirect thermal applications of hydrodynamic and acoustic cavitation. Relevant studies with emerging applications are discussed, while developments in cavitation, which have given rise to thermal applications during the last decade, are also included in this review.}
|
||
\field{annotation}{84 citations (Semantic Scholar/DOI) [2025-04-13]}
|
||
\field{day}{5}
|
||
\field{issn}{1359-4311}
|
||
\field{journaltitle}{Applied Thermal Engineering}
|
||
\field{month}{5}
|
||
\field{shortjournal}{Applied Thermal Engineering}
|
||
\field{shorttitle}{Direct and Indirect Thermal Applications of Hydrodynamic and Acoustic Cavitation}
|
||
\field{title}{Direct and Indirect Thermal Applications of Hydrodynamic and Acoustic Cavitation: {{A}} Review}
|
||
\field{urlday}{13}
|
||
\field{urlmonth}{4}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{171}
|
||
\field{year}{2020}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{115065}
|
||
\range{pages}{1}
|
||
\verb{doi}
|
||
\verb 10.1016/j.applthermaleng.2020.115065
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/I8UKGQW4/Gevari et al. - 2020 - Direct and indirect thermal applications of hydrodynamic and acoustic cavitation A review.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/UL8Z2A9S/S135943111937766X.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S135943111937766X
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S135943111937766X
|
||
\endverb
|
||
\keyw{Acoustic cavitation,Food industry,Heat transfer enhancement,Hydrodynamic cavitation,Water treatment}
|
||
\endentry
|
||
\entry{huangMicrostructureEvolutionMartensite2023}{article}{}{}
|
||
\name{author}{6}{}{%
|
||
{{hash=55328195d8b2c0f90f11e12f5ddb7d65}{%
|
||
family={Huang},
|
||
familyi={H\bibinitperiod},
|
||
given={Zonglian},
|
||
giveni={Z\bibinitperiod}}}%
|
||
{{hash=2938deb5048323c6e1bfdd80975d5b28}{%
|
||
family={Wang},
|
||
familyi={W\bibinitperiod},
|
||
given={Bo},
|
||
giveni={B\bibinitperiod}}}%
|
||
{{hash=0138deaf332692ced30d823b9cebc488}{%
|
||
family={Liu},
|
||
familyi={L\bibinitperiod},
|
||
given={Fei},
|
||
giveni={F\bibinitperiod}}}%
|
||
{{hash=92c4cc87ddf9f0a5abb5ff8d5b8878d4}{%
|
||
family={Song},
|
||
familyi={S\bibinitperiod},
|
||
given={Min},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=971be18e8809118d44c885580820c916}{%
|
||
family={Ni},
|
||
familyi={N\bibinitperiod},
|
||
given={Song},
|
||
giveni={S\bibinitperiod}}}%
|
||
{{hash=eb96d2754cddae273dd482f087734e31}{%
|
||
family={Liu},
|
||
familyi={L\bibinitperiod},
|
||
given={Shaojun},
|
||
giveni={S\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{61779e4ce456f415f5dc118db21bed83}
|
||
\strng{fullhash}{8ca9ebea09cf1f645c339306001d45ac}
|
||
\strng{fullhashraw}{8ca9ebea09cf1f645c339306001d45ac}
|
||
\strng{bibnamehash}{8ca9ebea09cf1f645c339306001d45ac}
|
||
\strng{authorbibnamehash}{8ca9ebea09cf1f645c339306001d45ac}
|
||
\strng{authornamehash}{61779e4ce456f415f5dc118db21bed83}
|
||
\strng{authorfullhash}{8ca9ebea09cf1f645c339306001d45ac}
|
||
\strng{authorfullhashraw}{8ca9ebea09cf1f645c339306001d45ac}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{The influence of laser energy density and heat treatment on the microstructure and properties of Co-Cr-Mo-W alloys fabricated by selective laser melting (SLM) are investigated symmetrically. When the laser power, the scanning speed, and the scanning space are set as 160~W, 400~mm/s, and 0.07~mm, respectively, the SLM-ed Co-Cr-Mo-W alloys display high strength and good ductility simultaneously. The precipitates ranging from nano- to macro- scale are finely distributed in SLM-ed CoCr alloys grains and/or along the grain boundaries in the heat treated alloys. Co-Cr-Mo-W alloys with an excellent combination of strength and ductility can be achieved by tailoring the microstructure and morphology of SLM-ed alloys during the heat treatment. The tensile strength, yield strength, and elongation are 1221.38~±~10~MPa, 778.81~±~12~MPa, and 17.2~±~0.67\%, respectively.}
|
||
\field{day}{1}
|
||
\field{issn}{0263-4368}
|
||
\field{journaltitle}{International Journal of Refractory Metals and Hard Materials}
|
||
\field{month}{6}
|
||
\field{shortjournal}{International Journal of Refractory Metals and Hard Materials}
|
||
\field{title}{Microstructure Evolution, Martensite Transformation and Mechanical Properties of Heat Treated {{Co-Cr-Mo-W}} Alloys by Selective Laser Melting}
|
||
\field{urlday}{13}
|
||
\field{urlmonth}{4}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{113}
|
||
\field{year}{2023}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{106170}
|
||
\range{pages}{1}
|
||
\verb{doi}
|
||
\verb 10.1016/j.ijrmhm.2023.106170
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ZJ5J6JMZ/Huang et al. - 2023 - Microstructure evolution, martensite transformation and mechanical properties of heat treated Co-Cr-.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/L9MFNPFY/S0263436823000707.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0263436823000707
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0263436823000707
|
||
\endverb
|
||
\keyw{Co–Cr–Mo-W alloys,Heat treatment,Martensite phase transformation,Mechanical properties,Selective laser melting}
|
||
\endentry
|
||
\entry{tawancyFccHcpTransformation1986}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=f3547527506994c69c774b2c0d77ac73}{%
|
||
family={Tawancy},
|
||
familyi={T\bibinitperiod},
|
||
given={H.\bibnamedelimi M.},
|
||
giveni={H\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
|
||
{{hash=f7d566a34064f3d0ccab33dde7a34069}{%
|
||
family={Ishwar},
|
||
familyi={I\bibinitperiod},
|
||
given={V.\bibnamedelimi R.},
|
||
giveni={V\bibinitperiod\bibinitdelim R\bibinitperiod}}}%
|
||
{{hash=6f964da88776c95344b60d3d9b6241fa}{%
|
||
family={Lewis},
|
||
familyi={L\bibinitperiod},
|
||
given={B.\bibnamedelimi E.},
|
||
giveni={B\bibinitperiod\bibinitdelim E\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{4de94c11cde2eac1de960723e9eac321}
|
||
\strng{fullhash}{b41586e8f4d7f9d36d48a78941a8c3b5}
|
||
\strng{fullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5}
|
||
\strng{bibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5}
|
||
\strng{authorbibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5}
|
||
\strng{authornamehash}{4de94c11cde2eac1de960723e9eac321}
|
||
\strng{authorfullhash}{b41586e8f4d7f9d36d48a78941a8c3b5}
|
||
\strng{authorfullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{annotation}{33 citations (Semantic Scholar/DOI) [2025-04-13]}
|
||
\field{day}{1}
|
||
\field{issn}{1573-4811}
|
||
\field{journaltitle}{Journal of Materials Science Letters}
|
||
\field{langid}{english}
|
||
\field{month}{3}
|
||
\field{number}{3}
|
||
\field{shortjournal}{J Mater Sci Lett}
|
||
\field{title}{On the Fcc → Hcp Transformation in a Cobalt-Base Superalloy ({{Haynes}} Alloy {{No}}. 25)}
|
||
\field{urlday}{13}
|
||
\field{urlmonth}{4}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{5}
|
||
\field{year}{1986}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{337\bibrangedash 341}
|
||
\range{pages}{5}
|
||
\verb{doi}
|
||
\verb 10.1007/BF01748098
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/7Z6PUATK/Tawancy et al. - 1986 - On the fcc → hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25).pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1007/BF01748098
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1007/BF01748098
|
||
\endverb
|
||
\keyw{Haynes Alloy,Polymer,Polymers}
|
||
\endentry
|
||
\entry{yuComparisonTriboMechanicalProperties2007}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=f46cff6a47143fdbd36ae8842919e073}{%
|
||
family={Yu},
|
||
familyi={Y\bibinitperiod},
|
||
given={H.},
|
||
giveni={H\bibinitperiod}}}%
|
||
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
|
||
family={Ahmed},
|
||
familyi={A\bibinitperiod},
|
||
given={R.},
|
||
giveni={R\bibinitperiod}}}%
|
||
{{useprefix=true,hash=39fbce992265c4dd42ff7cb6ab804ded}{%
|
||
family={Villiers\bibnamedelima Lovelock},
|
||
familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod},
|
||
given={H.},
|
||
giveni={H\bibinitperiod},
|
||
prefix={de},
|
||
prefixi={d\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{56581c67a86bce08f334a1ace4c9fccb}
|
||
\strng{fullhash}{8e67a0a25c7114030e7e739ed034990b}
|
||
\strng{fullhashraw}{8e67a0a25c7114030e7e739ed034990b}
|
||
\strng{bibnamehash}{8e67a0a25c7114030e7e739ed034990b}
|
||
\strng{authorbibnamehash}{8e67a0a25c7114030e7e739ed034990b}
|
||
\strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb}
|
||
\strng{authorfullhash}{8e67a0a25c7114030e7e739ed034990b}
|
||
\strng{authorfullhashraw}{8e67a0a25c7114030e7e739ed034990b}
|
||
\field{extraname}{1}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt\,\% composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.}
|
||
\field{day}{9}
|
||
\field{issn}{0742-4787}
|
||
\field{journaltitle}{Journal of Tribology}
|
||
\field{month}{1}
|
||
\field{number}{3}
|
||
\field{shortjournal}{Journal of Tribology}
|
||
\field{title}{A {{Comparison}} of the {{Tribo-Mechanical Properties}} of a {{Wear Resistant Cobalt-Based Alloy Produced}} by {{Different Manufacturing Processes}}}
|
||
\field{urlday}{17}
|
||
\field{urlmonth}{11}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{129}
|
||
\field{year}{2007}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{586\bibrangedash 594}
|
||
\range{pages}{9}
|
||
\verb{doi}
|
||
\verb 10.1115/1.2736450
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/EQ4ZS7HE/Yu et al. - 2007 - A Comparison of the Tribo-Mechanical Properties of a Wear Resistant Cobalt-Based Alloy Produced by D.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/QYU29N9Z/A-Comparison-of-the-Tribo-Mechanical-Properties-of.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1115/1.2736450
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1115/1.2736450
|
||
\endverb
|
||
\endentry
|
||
\entry{stoicaInfluenceHeattreatmentSliding2005}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=9ee308ed1264406c99dc3dc19fc74bbc}{%
|
||
family={Stoica},
|
||
familyi={S\bibinitperiod},
|
||
given={V.},
|
||
giveni={V\bibinitperiod}}}%
|
||
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
|
||
family={Ahmed},
|
||
familyi={A\bibinitperiod},
|
||
given={R.},
|
||
giveni={R\bibinitperiod}}}%
|
||
{{hash=396db0229b4cd75917372e6b8a4c12ee}{%
|
||
family={Itsukaichi},
|
||
familyi={I\bibinitperiod},
|
||
given={T.},
|
||
giveni={T\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{1dad3e925506f0bfcbc611fb083a4a04}
|
||
\strng{fullhash}{09c4b7a69ffaf05661ccd1c9f30d41c3}
|
||
\strng{fullhashraw}{09c4b7a69ffaf05661ccd1c9f30d41c3}
|
||
\strng{bibnamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3}
|
||
\strng{authorbibnamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3}
|
||
\strng{authornamehash}{1dad3e925506f0bfcbc611fb083a4a04}
|
||
\strng{authorfullhash}{09c4b7a69ffaf05661ccd1c9f30d41c3}
|
||
\strng{authorfullhashraw}{09c4b7a69ffaf05661ccd1c9f30d41c3}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Functionally graded WC-NiCrBSi coatings were thermally sprayed using a High Velocity Oxy-Fuel (JP5000) system and heat-treated at 1200 °C in argon environment. The relative performance of the as-sprayed and heat-treated coatings was investigated in sliding wear under different tribological conditions of contact stress, and test couple configuration, using a high frequency reciprocating ball on plate rig. Test results are discussed with the help of microstructural evaluations and mechanical properties measurements. Results indicate that by heat-treating the coatings at a temperature of 1200 °C, it is possible to achieve higher wear resistance, both in terms of coating wear, as well as the total wear of the test couples. This was attributed to the improvements in the coating microstructure during the heat-treatment, which resulted in an improvement in coating's mechanical properties through the formation of hard phases, elimination of brittle W2C and W, and the establishment of metallurgical bonding within the coating microstructure. © 2005 Elsevier B.V. All rights reserved.}
|
||
\field{annotation}{41 citations (Semantic Scholar/DOI) [2025-04-20]\\ 41 citations (Semantic Scholar/DOI) [2025-04-12]}
|
||
\field{issn}{02578972 (ISSN)}
|
||
\field{journaltitle}{Surface and Coatings Technology}
|
||
\field{langid}{english}
|
||
\field{number}{1}
|
||
\field{shortjournal}{Surf. Coat. Technol.}
|
||
\field{title}{Influence of Heat-Treatment on the Sliding Wear of Thermal Spray Cermet Coatings}
|
||
\field{volume}{199}
|
||
\field{year}{2005}
|
||
\field{dateera}{ce}
|
||
\field{pages}{7\bibrangedash 21}
|
||
\range{pages}{15}
|
||
\verb{doi}
|
||
\verb 10.1016/j.surfcoat.2005.03.026
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ANZKIL7N/stoica2005.pdf.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844464044&doi=10.1016%2fj.surfcoat.2005.03.026&partnerID=40&md5=6ad736723e828d39edf4a37c5975d2dc
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844464044&doi=10.1016%2fj.surfcoat.2005.03.026&partnerID=40&md5=6ad736723e828d39edf4a37c5975d2dc
|
||
\endverb
|
||
\keyw{Bonding,Brittleness,Cermets,Coating microstructure,Frequencies,Functionally graded materials,heat treatment,Heat treatment,Heat-treated coatings,Heat-treatment,High Velocity Oxy-Fuel,Mechanical properties,Microstructure,Nickel compounds,Phase composition,sliding wear,Sliding wear,Sprayed coatings,Thermal spray coatings,Tribology,Tungsten compounds,Wear of materials}
|
||
\endentry
|
||
\entry{ahmedInfluenceReHIPingStructure2013}{article}{}{}
|
||
\name{author}{4}{}{%
|
||
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
|
||
family={Ahmed},
|
||
familyi={A\bibinitperiod},
|
||
given={R.},
|
||
giveni={R\bibinitperiod}}}%
|
||
{{useprefix=true,hash=75bf7913ab7463c6e3734bec975046fc}{%
|
||
family={Villiers\bibnamedelima Lovelock},
|
||
familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod},
|
||
given={H.\bibnamedelimi L.},
|
||
giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod},
|
||
prefix={de},
|
||
prefixi={d\bibinitperiod}}}%
|
||
{{hash=0e68382b25995f7a55c9b600def7c365}{%
|
||
family={Davies},
|
||
familyi={D\bibinitperiod},
|
||
given={S.},
|
||
giveni={S\bibinitperiod}}}%
|
||
{{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{%
|
||
family={Faisal},
|
||
familyi={F\bibinitperiod},
|
||
given={N.\bibnamedelimi H.},
|
||
giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{fullhash}{e70fdd408b4a5e9730bd0722565b8e34}
|
||
\strng{fullhashraw}{e70fdd408b4a5e9730bd0722565b8e34}
|
||
\strng{bibnamehash}{e70fdd408b4a5e9730bd0722565b8e34}
|
||
\strng{authorbibnamehash}{e70fdd408b4a5e9730bd0722565b8e34}
|
||
\strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f}
|
||
\strng{authorfullhash}{e70fdd408b4a5e9730bd0722565b8e34}
|
||
\strng{authorfullhashraw}{e70fdd408b4a5e9730bd0722565b8e34}
|
||
\field{extraname}{4}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{HIP-consolidation (Hot Isostatic Pressing or HIPing) of cobalt-based Stellite alloys offers significant technological advantages for components operating in aggressive wear environments. The aim of this investigation was to ascertain the effect of re-HIPing on the HIPed alloy properties for Stellite 4, 6 and 20 alloys. Structure–property relationships are discussed on the basis of microstructural and tribo-mechanical evaluations. Re-HIPing results in coarsening of carbides and solid solution strengthening of the matrix. The average indentation modulus improved, as did the average hardness at micro- and nano-scales. Re-HIPing showed improvement in wear properties the extent of which was dependent on alloy composition.}
|
||
\field{day}{1}
|
||
\field{issn}{0301-679X}
|
||
\field{journaltitle}{Tribology International}
|
||
\field{month}{1}
|
||
\field{shortjournal}{Tribology International}
|
||
\field{title}{Influence of {{Re-HIPing}} on the Structure–Property Relationships of Cobalt-Based Alloys}
|
||
\field{urlday}{30}
|
||
\field{urlmonth}{6}
|
||
\field{urlyear}{2024}
|
||
\field{volume}{57}
|
||
\field{year}{2013}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{8\bibrangedash 21}
|
||
\range{pages}{14}
|
||
\verb{doi}
|
||
\verb 10.1016/j.triboint.2012.06.025
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/YD3U2PLT/Ahmed et al. - 2013 - Influence of Re-HIPing on the structure–property r.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/6RBIWYTK/S0301679X12002241.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241
|
||
\endverb
|
||
\keyw{Abrasive wear,Cobalt based alloys,HIPing and Re-HIPing,Stellite 4 6 20 alloys}
|
||
\endentry
|
||
\entry{yuInfluenceManufacturingProcess2008}{article}{}{}
|
||
\name{author}{4}{}{%
|
||
{{hash=f46cff6a47143fdbd36ae8842919e073}{%
|
||
family={Yu},
|
||
familyi={Y\bibinitperiod},
|
||
given={H.},
|
||
giveni={H\bibinitperiod}}}%
|
||
{{hash=73be20d7f1a5cbb337df0ca58a8fa420}{%
|
||
family={Ahmed},
|
||
familyi={A\bibinitperiod},
|
||
given={R.},
|
||
giveni={R\bibinitperiod}}}%
|
||
{{hash=720a4573d41f2302c51d8dfc20eb7025}{%
|
||
family={Lovelock},
|
||
familyi={L\bibinitperiod},
|
||
given={H.\bibnamedelimi de\bibnamedelima Villiers},
|
||
giveni={H\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
|
||
{{hash=0e68382b25995f7a55c9b600def7c365}{%
|
||
family={Davies},
|
||
familyi={D\bibinitperiod},
|
||
given={S.},
|
||
giveni={S\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{56581c67a86bce08f334a1ace4c9fccb}
|
||
\strng{fullhash}{57ca415fdcbe0d531a76658a78b7a3d4}
|
||
\strng{fullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4}
|
||
\strng{bibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4}
|
||
\strng{authorbibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4}
|
||
\strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb}
|
||
\strng{authorfullhash}{57ca415fdcbe0d531a76658a78b7a3d4}
|
||
\strng{authorfullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4}
|
||
\field{extraname}{2}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Manufacturing process routes of materials can be adapted to manipulate their microstructure and hence their tribological performance. As industrial demands push the applications of tribological materials to harsher environments of higher stress, starved lubrication, and improved life performance, manufacturing processes can be tailored to optimize their use in particular engineering applications. The aim of this paper was therefore to comprehend the structure-property relationships of a wear resistant cobalt-based alloy (Stellite 6) produced from two different processing routes of powder consolidated hot isostatic pressing (HIPing) and casting. This alloy had a nominal wt\,\% composition of Co–28Cr–4.5W–1C, which is commonly used in wear related applications in harsh tribological environments. However, the coarse carbide structure of the cast alloy results in higher brittleness and lower toughness. Hence this research was conducted to comprehend if carbide refinement, caused by changing the processing route to HIPing, could improve the tribomechanical performance of this alloy. Microstructural and tribomechanical evaluations, which involved hardness, impact toughness, abrasive wear, sliding wear, and contact fatigue performance tests, indicated that despite the similar abrasive and sliding wear resistance of both alloys, the HIPed alloy exhibited an improved contact fatigue and impact toughness performance in comparison to the cast counterpart. This difference in behavior is discussed in terms of the structure-property relationships. Results of this research indicated that the HIPing process could provide additional impact and fatigue resistance to this alloy without compromising the hardness and the abrasive/sliding wear resistance, which makes the HIPed alloy suitable for relatively higher stress applications. Results are also compared with a previously reported investigation of the Stellite 20 alloy, which had a much higher carbide content in comparison to the Stellite 6 alloy, caused by the variation in the content of alloying elements. These results indicated that the fatigue resistance did not follow the expected trend of the improvement in impact toughness. In terms of the design process, the combination of hardness, toughness, and carbide content show a complex interdependency, where a 40\% reduction in the average hardness and 60\% reduction in carbide content had a more dominating effect on the contact fatigue resistance when compared with an order of magnitude improvement in the impact toughness of the HIPed Stellite 6 alloy.}
|
||
\field{annotation}{46 citations (Semantic Scholar/DOI) [2025-05-01]}
|
||
\field{day}{4}
|
||
\field{issn}{0742-4787}
|
||
\field{journaltitle}{Journal of Tribology}
|
||
\field{month}{12}
|
||
\field{number}{011601}
|
||
\field{shortjournal}{Journal of Tribology}
|
||
\field{title}{Influence of {{Manufacturing Process}} and {{Alloying Element Content}} on the {{Tribomechanical Properties}} of {{Cobalt-Based Alloys}}}
|
||
\field{urlday}{1}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{131}
|
||
\field{year}{2008}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\verb{doi}
|
||
\verb 10.1115/1.2991122
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/S25JD3BR/Yu et al. - 2008 - Influence of Manufacturing Process and Alloying Element Content on the Tribomechanical Properties of.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/4ZMU78K6/Influence-of-Manufacturing-Process-and-Alloying.html
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://doi.org/10.1115/1.2991122
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://doi.org/10.1115/1.2991122
|
||
\endverb
|
||
\endentry
|
||
\entry{szalaEffectNitrogenIon2021}{article}{}{}
|
||
\name{author}{6}{}{%
|
||
{{hash=26ecda2187f0e2b702a2497a5dc3f27d}{%
|
||
family={Szala},
|
||
familyi={S\bibinitperiod},
|
||
given={M.},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=b1f8638f62fc396f39212102aa9a7be4}{%
|
||
family={Chocyk},
|
||
familyi={C\bibinitperiod},
|
||
given={D.},
|
||
giveni={D\bibinitperiod}}}%
|
||
{{hash=fa359615394426dff04c6f196de50a92}{%
|
||
family={Skic},
|
||
familyi={S\bibinitperiod},
|
||
given={A.},
|
||
giveni={A\bibinitperiod}}}%
|
||
{{hash=735ac71614372e54c2c5b12c4a8b2037}{%
|
||
family={Kamiński},
|
||
familyi={K\bibinitperiod},
|
||
given={M.},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=80f5de14d028c35ed21c52a0993eb44e}{%
|
||
family={Macek},
|
||
familyi={M\bibinitperiod},
|
||
given={W.},
|
||
giveni={W\bibinitperiod}}}%
|
||
{{hash=2458b153bc1351893a163117b0b687eb}{%
|
||
family={Turek},
|
||
familyi={T\bibinitperiod},
|
||
given={M.},
|
||
giveni={M\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{MDPI AG}%
|
||
}
|
||
\strng{namehash}{0c580510ffd19c48fb276fd9bcbd3cc8}
|
||
\strng{fullhash}{ed8bfd0d39c94dcd76e642641bd4b638}
|
||
\strng{fullhashraw}{ed8bfd0d39c94dcd76e642641bd4b638}
|
||
\strng{bibnamehash}{ed8bfd0d39c94dcd76e642641bd4b638}
|
||
\strng{authorbibnamehash}{ed8bfd0d39c94dcd76e642641bd4b638}
|
||
\strng{authornamehash}{0c580510ffd19c48fb276fd9bcbd3cc8}
|
||
\strng{authorfullhash}{ed8bfd0d39c94dcd76e642641bd4b638}
|
||
\strng{authorfullhashraw}{ed8bfd0d39c94dcd76e642641bd4b638}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5*1016 cm-2 and 1*1017 cm-2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the "(hcp) to (fcc) structure. Unimplanted stellite "-rich matrix is less prone to plastic deformation than and consequently, increase of phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable structure formed by ion implantation consumes the cavitation load for work-hardening and ! " martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials. © 2021 by the authors.}
|
||
\field{issn}{19961944 (ISSN)}
|
||
\field{journaltitle}{Materials}
|
||
\field{langid}{english}
|
||
\field{number}{9}
|
||
\field{shortjournal}{Mater.}
|
||
\field{title}{Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of {{HIPed}} Stellite 6}
|
||
\field{volume}{14}
|
||
\field{year}{2021}
|
||
\field{dateera}{ce}
|
||
\verb{doi}
|
||
\verb 10.3390/ma14092324
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/8TZ2ZN8B/Szala et al. - 2021 - Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solu.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105941706&doi=10.3390%2fma14092324&partnerID=40&md5=4c846be7d06977d42697c88c326e5923
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105941706&doi=10.3390%2fma14092324&partnerID=40&md5=4c846be7d06977d42697c88c326e5923
|
||
\endverb
|
||
\keyw{AISI-304 stainless steel,Atomic force microscopy,Carbides,Cavitation,Cavitation erosion,Cavitation erosion resistance,Chromium compounds,Cobalt alloy,Cobalt alloys,Cracks propagation,Damage mechanism,Engineering materials,Erosion,Failure analysis,Ion implantation,Ions,Linear transformations,Martensitic transformations,Mean depth of erosions,Metastable structures,Nitrogen,Nitrogen ion implantations,Phase transformation,Plastic deformation,Stellite,Stellite 6,Strain hardening,Surface profilometers,Wear,X ray diffraction}
|
||
\endentry
|
||
\entry{swietlickiEffectsShotPeening2022}{article}{}{}
|
||
\name{author}{3}{}{%
|
||
{{hash=d3299246b779eb0d7db9b0367719016d}{%
|
||
family={Świetlicki},
|
||
familyi={Ś\bibinitperiod},
|
||
given={Aleksander},
|
||
giveni={A\bibinitperiod}}}%
|
||
{{hash=4a9ee02f32549c4bddb8fc6a867aa002}{%
|
||
family={Szala},
|
||
familyi={S\bibinitperiod},
|
||
given={Mirosław},
|
||
giveni={M\bibinitperiod}}}%
|
||
{{hash=c0e584b8761654b7ac2be1ddd6ea0f19}{%
|
||
family={Walczak},
|
||
familyi={W\bibinitperiod},
|
||
given={Mariusz},
|
||
giveni={M\bibinitperiod}}}%
|
||
}
|
||
\list{publisher}{1}{%
|
||
{Multidisciplinary Digital Publishing Institute}%
|
||
}
|
||
\strng{namehash}{af18846e40d5d7c88208fb1f0d6a4da1}
|
||
\strng{fullhash}{ab00826c94f677c24ae702787db6e72d}
|
||
\strng{fullhashraw}{ab00826c94f677c24ae702787db6e72d}
|
||
\strng{bibnamehash}{ab00826c94f677c24ae702787db6e72d}
|
||
\strng{authorbibnamehash}{ab00826c94f677c24ae702787db6e72d}
|
||
\strng{authornamehash}{af18846e40d5d7c88208fb1f0d6a4da1}
|
||
\strng{authorfullhash}{ab00826c94f677c24ae702787db6e72d}
|
||
\strng{authorfullhashraw}{ab00826c94f677c24ae702787db6e72d}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{Shot peening is a dynamically developing surface treatment used to improve the surface properties modified by tool, impact, microblasting, or shot action. This paper reviews the basic information regarding shot peening methods. The peening processes and effects of the shot peening and cavitation peening treatments on the surface layer properties of metallic components are analysed. Moreover, the effects of peening on the operational performance of metallic materials are summarized. Shot peening is generally applied to reduce the surface roughness, increase the hardness, and densify the surface layer microstructure, which leads to work hardening effects. In addition, the residual compressive stresses introduced into the material have a beneficial effect on the performance of the surface layer. Therefore, peening can be beneficial for metallic structures prone to fatigue, corrosion, and wear. Recently, cavitation peening has been increasingly developed. This review paper suggests that most research on cavitation peening omits the treatment of additively manufactured metallic materials. Furthermore, no published studies combine shot peening and cavitation peening in one hybrid process, which could synthesize the benefits of both peening processes. Moreover, there is a need to investigate the effects of peening, especially cavitation peening and hybrid peening, on the anti-wear and corrosion performance of additively manufactured metallic materials. Therefore, the literature gap leading to the scope of future work is also included.}
|
||
\field{issn}{1996-1944}
|
||
\field{issue}{7}
|
||
\field{journaltitle}{Materials}
|
||
\field{langid}{english}
|
||
\field{month}{1}
|
||
\field{number}{7}
|
||
\field{title}{Effects of {{Shot Peening}} and {{Cavitation Peening}} on {{Properties}} of {{Surface Layer}} of {{Metallic Materials}}—{{A Short Review}}}
|
||
\field{urlday}{12}
|
||
\field{urlmonth}{5}
|
||
\field{urlyear}{2025}
|
||
\field{volume}{15}
|
||
\field{year}{2022}
|
||
\field{dateera}{ce}
|
||
\field{urldateera}{ce}
|
||
\field{pages}{2476}
|
||
\range{pages}{1}
|
||
\verb{doi}
|
||
\verb 10.3390/ma15072476
|
||
\endverb
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/IY49YCGK/Świetlicki et al. - 2022 - Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials—.pdf
|
||
\endverb
|
||
\verb{urlraw}
|
||
\verb https://www.mdpi.com/1996-1944/15/7/2476
|
||
\endverb
|
||
\verb{url}
|
||
\verb https://www.mdpi.com/1996-1944/15/7/2476
|
||
\endverb
|
||
\keyw{cavitation,cavitation peening,hardness,metal alloy,peening,roughness,shot peening,surface treatment}
|
||
\endentry
|
||
\entry{thiruvengadamTheoryErosion1967}{article}{}{}
|
||
\name{author}{1}{}{%
|
||
{{hash=d3cae98a50611da092efbc498a5a497c}{%
|
||
family={Thiruvengadam},
|
||
familyi={T\bibinitperiod},
|
||
given={Alagu},
|
||
giveni={A\bibinitperiod}}}%
|
||
}
|
||
\strng{namehash}{d3cae98a50611da092efbc498a5a497c}
|
||
\strng{fullhash}{d3cae98a50611da092efbc498a5a497c}
|
||
\strng{fullhashraw}{d3cae98a50611da092efbc498a5a497c}
|
||
\strng{bibnamehash}{d3cae98a50611da092efbc498a5a497c}
|
||
\strng{authorbibnamehash}{d3cae98a50611da092efbc498a5a497c}
|
||
\strng{authornamehash}{d3cae98a50611da092efbc498a5a497c}
|
||
\strng{authorfullhash}{d3cae98a50611da092efbc498a5a497c}
|
||
\strng{authorfullhashraw}{d3cae98a50611da092efbc498a5a497c}
|
||
\field{sortinit}{5}
|
||
\field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c}
|
||
\field{labelnamesource}{author}
|
||
\field{labeltitlesource}{title}
|
||
\field{abstract}{An elementary theory of erosion is derived based on the assumptions of 'accumulation' and 'attenuation' of the energies of impact causing erosion. This theory quantitatively predicts the relative intensity of erosion as a function of relative time and this prediction is in fair agreement with experimental observations. Since the intensity of collision, the distance of shock transmission and the material failure are all statistical events, a generalization of the elementary theory is suggested. Some of the practical results of this theory are the predictions of the cumulative depth of erosion, the determination of erosion strength and the method of correlation with other parameters such as liquid properties and hydrodynamic factors. Modifications of this theory for brittle and viscoelastic materials are also suggested. (Author)}
|
||
\field{day}{1}
|
||
\field{journaltitle}{Proc. 2nd Meersburg Conf. on Rain Erosion and Allied Phenomena}
|
||
\field{month}{3}
|
||
\field{shortjournal}{Proc. 2nd Meersburg Conf. on Rain Erosion and Allied Phenomena}
|
||
\field{title}{Theory of Erosion}
|
||
\field{volume}{2}
|
||
\field{year}{1967}
|
||
\field{dateera}{ce}
|
||
\field{pages}{53}
|
||
\range{pages}{1}
|
||
\verb{file}
|
||
\verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/Z55KHM9F/Thiruvengadam - 1967 - Theory of erosion.pdf
|
||
\endverb
|
||
\endentry
|
||
\enddatalist
|
||
\endrefsection
|
||
\endinput
|
||
|