% $ biblatex auxiliary file $ % $ biblatex bbl format version 3.3 $ % Do not modify the above lines! % % This is an auxiliary file used by the 'biblatex' package. % This file may safely be deleted. It will be recreated by % biber as required. % \begingroup \makeatletter \@ifundefined{ver@biblatex.sty} {\@latex@error {Missing 'biblatex' package} {The bibliography requires the 'biblatex' package.} \aftergroup\endinput} {} \endgroup \refsection{0} \datalist[entry]{none/global//global/global/global} \entry{ahmedStructurePropertyRelationships2014}{article}{}{} \name{author}{4}{}{% {{hash=25252d98cf2cdf2878867f5c5a6110fb}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Rehan}, giveni={R\bibinitperiod}}}% {{useprefix=true,hash=75bf7913ab7463c6e3734bec975046fc}{% family={Villiers\bibnamedelima Lovelock}, familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, given={H.\bibnamedelimi L.}, giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, prefix={de}, prefixi={d\bibinitperiod}}}% {{hash=7e2f8097b044a6f2cc72af10f2bab7de}{% family={Faisal}, familyi={F\bibinitperiod}, given={Nadimul\bibnamedelima Haque}, giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=0e68382b25995f7a55c9b600def7c365}{% family={Davies}, familyi={D\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% } \strng{namehash}{9cc1d49cc1572c67ddbd4624ee55ebb2} \strng{fullhash}{da704a45be35d9ecff2c3dd668cd8ada} \strng{fullhashraw}{da704a45be35d9ecff2c3dd668cd8ada} \strng{bibnamehash}{da704a45be35d9ecff2c3dd668cd8ada} \strng{authorbibnamehash}{da704a45be35d9ecff2c3dd668cd8ada} \strng{authornamehash}{9cc1d49cc1572c67ddbd4624ee55ebb2} \strng{authorfullhash}{da704a45be35d9ecff2c3dd668cd8ada} \strng{authorfullhashraw}{da704a45be35d9ecff2c3dd668cd8ada} \field{extraname}{1} \field{sortinit}{3} \field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{This investigation considered the multiscale tribo-mechanical evaluations of CoCrMo (Stellite®21) alloys manufactured via two different processing routes of casting and HIP-consolidation from powder (Hot Isostatic Pressing). These involved hardness, nanoscratch, impact toughness, abrasive wear and sliding wear evaluations using pin-on-disc and ball-on-flat tests. HIPing improved the nanoscratch and ball-on-flat sliding wear performance due to higher hardness and work-hardening rate of the metal matrix. The cast alloy however exhibited superior abrasive wear and self-mated pin-on-disc wear performance. The tribological properties were more strongly influenced by the CoCr matrix, which is demonstrated in nanoscratch analysis.} \field{day}{1} \field{issn}{0301-679X} \field{journaltitle}{Tribology International} \field{month}{12} \field{shortjournal}{Tribology International} \field{title}{Structure–Property Relationships in a {{CoCrMo}} Alloy at Micro and Nano-Scales} \field{urlday}{30} \field{urlmonth}{6} \field{urlyear}{2024} \field{volume}{80} \field{year}{2014} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{98\bibrangedash 114} \range{pages}{17} \verb{doi} \verb 10.1016/j.triboint.2014.06.015 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ARRWCGQS/Ahmed et al. - 2014 - Structure–property relationships in a CoCrMo alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/PVWUZYHA/Ahmed et al. - 2014 - Structure–property relationships in a CoCrMo alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/YLW4IKKP/S0301679X14002436.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0301679X14002436 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0301679X14002436 \endverb \keyw{Manufacturing,Nanoscratch,Nanotribology,Wear} \endentry \entry{shinEffectMolybdenumMicrostructure2003}{article}{}{} \name{author}{5}{}{% {{hash=11c1c63fde4778e27fd93d2389dd1d9f}{% family={Shin}, familyi={S\bibinitperiod}, given={Jong-Choul}, giveni={J\bibinithyphendelim C\bibinitperiod}}}% {{hash=4d7d3c5a5d25916fcbdacaec6e7b281c}{% family={Doh}, familyi={D\bibinitperiod}, given={Jung-Man}, giveni={J\bibinithyphendelim M\bibinitperiod}}}% {{hash=9257782113324f27de8d34043cd84f7b}{% family={Yoon}, familyi={Y\bibinitperiod}, given={Jin-Kook}, giveni={J\bibinithyphendelim K\bibinitperiod}}}% {{hash=f1733c8d49f956fedeb6a8c03ce455c9}{% family={Lee}, familyi={L\bibinitperiod}, given={Dok-Yol}, giveni={D\bibinithyphendelim Y\bibinitperiod}}}% {{hash=d2534382552f3c10ee00cd39f0979de1}{% family={Kim}, familyi={K\bibinitperiod}, given={Jae-Soo}, giveni={J\bibinithyphendelim S\bibinitperiod}}}% } \strng{namehash}{35defe2b8f7d338cdec33698baeff00a} \strng{fullhash}{178cbc46d086767ebf3c6301cad009cf} \strng{fullhashraw}{178cbc46d086767ebf3c6301cad009cf} \strng{bibnamehash}{178cbc46d086767ebf3c6301cad009cf} \strng{authorbibnamehash}{178cbc46d086767ebf3c6301cad009cf} \strng{authornamehash}{35defe2b8f7d338cdec33698baeff00a} \strng{authorfullhash}{178cbc46d086767ebf3c6301cad009cf} \strng{authorfullhashraw}{178cbc46d086767ebf3c6301cad009cf} \field{sortinit}{3} \field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The Stellite 6 hardfacing alloys with different Mo contents have been deposited on AISI 1045-carbon steel using a Plasma Transferred Arc (PTA) welding machine. The effect of Mo on the microstructures and wear resistance properties of the Stellite 6 hardfacing alloys were investigated using optical microscopy, scanning electron microscopy, electron probe microanalysis and X-ray diffraction. With an increase in Mo contents, the M23C6 and M6C type carbides were formed instead of Cr-rich M7C3 and M23C6 type carbides observed in the interdenritic region of the Mo-free Stellite 6 hardfacing alloy. The size of Cr-rich carbides in interdendritic region decreased, but that of M6C type carbide increased as well as the refinement of Co-rich dendrites. The volume fraction of Cr-rich carbides slightly increased, but that of M6C type carbide abruptly increased. This microstructural change was responsible for the improvement of the mechanical properties such as hardness and wear resistance of the Mo-modified Stellite 6 hardfacing alloy.} \field{day}{24} \field{issn}{0257-8972} \field{journaltitle}{Surface and Coatings Technology} \field{month}{3} \field{number}{2} \field{shortjournal}{Surface and Coatings Technology} \field{title}{Effect of Molybdenum on the Microstructure and Wear Resistance of Cobalt-Base {{Stellite}} Hardfacing Alloys} \field{urlday}{2} \field{urlmonth}{6} \field{urlyear}{2025} \field{volume}{166} \field{year}{2003} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{117\bibrangedash 126} \range{pages}{10} \verb{doi} \verb 10.1016/S0257-8972(02)00853-8 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ZHJGK86Z/Shin et al. - 2003 - Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing al.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/KA6QRL6J/S0257897202008538.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0257897202008538 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0257897202008538 \endverb \keyw{Co-base Stellite alloys,Microstructure and wear resistance,Molybdenum,PTA} \endentry \entry{hasanBasicsStellitesMachining2016}{article}{}{} \name{author}{3}{}{% {{hash=08c8cfb937902323ad6056c9b7f675e2}{% family={Hasan}, familyi={H\bibinitperiod}, given={Md\bibnamedelima Shahanur}, giveni={M\bibinitperiod\bibinitdelim S\bibinitperiod}}}% {{hash=eabf81bba7b970812c2add33930d03fb}{% family={Mazid}, familyi={M\bibinitperiod}, given={Abdul\bibnamedelima Md}, giveni={A\bibinitperiod\bibinitdelim M\bibinitperiod}}}% {{hash=5af3717d3ceeece3929a2b29ad491166}{% family={Clegg}, familyi={C\bibinitperiod}, given={Richard}, giveni={R\bibinitperiod}}}% } \strng{namehash}{b1ede05cfaff686d5ee4e579d223721e} \strng{fullhash}{34c0c2342c40213384252841489aeb1a} \strng{fullhashraw}{34c0c2342c40213384252841489aeb1a} \strng{bibnamehash}{34c0c2342c40213384252841489aeb1a} \strng{authorbibnamehash}{34c0c2342c40213384252841489aeb1a} \strng{authornamehash}{b1ede05cfaff686d5ee4e579d223721e} \strng{authorfullhash}{34c0c2342c40213384252841489aeb1a} \strng{authorfullhashraw}{34c0c2342c40213384252841489aeb1a} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Stellites are cobalt (Co)-based superalloys available in two main combinations: (a) a Tungsten (W) group with composition of Co-Cr-W-C, and (b) a Molybdenum (Mo) group containing Co-Cr-Mo-C. Stellites possess outstanding corrosion resistance, oxidation resistance, wear resistance, heat resistance, and low magnetic permeability. Components made of stellites work well in highly corrosive environments and maintain these advantageous properties at elevated temperatures. Components made of stellites are widely used in the oil and gas, automotive, nuclear power, paper and pulp, chemical and petrochemical, refineries, automobile, aerospace and aircraft industries. By virtue of their nonmagnetic, anticorrosive and non-reactivity to human body-fluid properties, stellites are used in medical surgery and in surgical tools, tooth and bone implants and replacements, heart valves, and in heart pacemakers. The hardness range of stellites is from 32 to 55 HRC, which makes stellites brittle materials but they have a low Young’s modulus. Due to their high hardness, dense but non-homogeneous molecular structure and lower thermal conductivity, machining operations for parts made of stellites are extremely difficult, categorising stellites as difficult-to-machine materials like Ti-alloys, inconels, composites and stainless steels. Usually, machine components made of stellites are produced by a deposition method onto steel substrates instead of expensive solid stellite bars. The rough surfaces of deposited stellites are then finished by grinding, rather than some other economic machining process, which is costly and time-consuming, making stellite products very expensive. This paper provides a basic overview of stellites applicable in engineering, their significances and specific applications, advantages and disadvantages in respect of machining processes. A brief review on experimental research on economically rational cutting parameters for turning operations of Stellite 6 using coated carbide inserts is presented in this paper. Interesting facts on the residual stresses induced by machining processes in Stellite 6 are revealed and analysed. The microhardness variation of machined surfaces of stellite 6 using different tool geometries is investigated in this research review. It is revealed that coated carbide inserts with a medium-size nose radius perform better in respect of hardness changes and heat generation, producing minimum phase changes on machined surfaces of stellite 6.} \field{day}{19} \field{issn}{0128-1852} \field{journaltitle}{International Journal of Engineering Materials and Manufacture} \field{langid}{english} \field{month}{12} \field{number}{2} \field{shortjournal}{IJEMM} \field{title}{The {{Basics}} of {{Stellites}} in {{Machining Perspective}}} \field{urlday}{11} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{1} \field{year}{2016} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{35\bibrangedash 50} \range{pages}{16} \verb{doi} \verb 10.26776/ijemm.01.02.2016.01 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/4QFRZS4P/Hasan et al. - 2016 - The Basics of Stellites in Machining Perspective.pdf \endverb \verb{urlraw} \verb https://deerhillpublishing.com/index.php/ijemm/article/view/13 \endverb \verb{url} \verb https://deerhillpublishing.com/index.php/ijemm/article/view/13 \endverb \endentry \entry{malayogluComparingPerformanceHIPed2003}{article}{}{} \name{author}{2}{}{% {{hash=71f57eb10950396ed3fa62c703ddaee5}{% family={Malayoglu}, familyi={M\bibinitperiod}, given={U.}, giveni={U\bibinitperiod}}}% {{hash=c00a172220606f67c3da2492047a9b71}{% family={Neville}, familyi={N\bibinitperiod}, given={A.}, giveni={A\bibinitperiod}}}% } \strng{namehash}{49054a18ed24a57daa4c3278c94c6ce5} \strng{fullhash}{49054a18ed24a57daa4c3278c94c6ce5} \strng{fullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} \strng{bibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} \strng{authorbibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} \strng{authornamehash}{49054a18ed24a57daa4c3278c94c6ce5} \strng{authorfullhash}{49054a18ed24a57daa4c3278c94c6ce5} \strng{authorfullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} \field{sortinit}{5} \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In this paper, results from erosion–corrosion tests performed under liquid–solid erosion conditions in 3.5\% NaCl liquid medium are reported. The focus of the paper is to compare the behaviour of Cast and Hot Isostatically Pressed (HIPed) Stellite 6 alloy in terms of their electrochemical corrosion characteristics, their resistance to mechanical degradation and relationship between microstructure and degradation mechanisms. It has been shown that HIPed Stellite 6 possesses better erosion and erosion corrosion resistance than that of Cast Stellite 6 and two stainless steels (UNS S32760 and UNS S31603) under the same solid loading (200 and 500mg/l), and same temperature (20 and 50°C). The material removal mechanisms have been identified by using atomic force microscopy (AFM) and shown preferential removal of the Co-rich matrix to be less extensive on the HIPed material.} \field{day}{1} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{8} \field{number}{1} \field{series}{14th {{International Conference}} on {{Wear}} of {{Materials}}} \field{shortjournal}{Wear} \field{title}{Comparing the Performance of {{HIPed}} and {{Cast Stellite}} 6 Alloy in Liquid–Solid Slurries} \field{urlday}{17} \field{urlmonth}{2} \field{urlyear}{2025} \field{volume}{255} \field{year}{2003} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{181\bibrangedash 194} \range{pages}{14} \verb{doi} \verb 10.1016/S0043-1648(03)00287-4 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/22BIGZS5/Malayoglu and Neville - 2003 - Comparing the performance of HIPed and Cast Stellite 6 alloy in liquid–solid slurries.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/54ZML2SM/S0043164803002874.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 \endverb \keyw{Cast Stellite 6,Corrosion,Erosion,HIPed,Liquid–solid slurries} \endentry \entry{raghuRecentDevelopmentsWear1997}{inproceedings}{}{} \name{author}{2}{}{% {{hash=d1ffaf092dcf3a359da1985267f727a1}{% family={Raghu}, familyi={R\bibinitperiod}, given={Damodaran}, giveni={D\bibinitperiod}}}% {{hash=71999827eaf46be63a959ef13f1b03b6}{% family={Wu}, familyi={W\bibinitperiod}, given={James\bibnamedelimb B.\bibnamedelimi C.}, giveni={J\bibinitperiod\bibinitdelim B\bibinitperiod\bibinitdelim C\bibinitperiod}}}% } \list{publisher}{1}{% {OnePetro}% } \strng{namehash}{5ea6c6486093aae3c9028d34e8e63462} \strng{fullhash}{5ea6c6486093aae3c9028d34e8e63462} \strng{fullhashraw}{5ea6c6486093aae3c9028d34e8e63462} \strng{bibnamehash}{5ea6c6486093aae3c9028d34e8e63462} \strng{authorbibnamehash}{5ea6c6486093aae3c9028d34e8e63462} \strng{authornamehash}{5ea6c6486093aae3c9028d34e8e63462} \strng{authorfullhash}{5ea6c6486093aae3c9028d34e8e63462} \strng{authorfullhashraw}{5ea6c6486093aae3c9028d34e8e63462} \field{sortinit}{5} \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{ABSTRACT. Oil production and refining environments pose a very severe wear and corrosion envirorunent. Material designers are challenged with the need to design and develop materials that combine a high corrosion resistance with very good wear resistance. Coupled with that is the need for these materials to meet requirements, such as, fracture toughness and resistance to sulfide and chloride stress corrosion cracking, Often times increasing the resistance to wear compromises the corrosion and welding characteristics. This paper covers a variety of material developments that aim to address the twin problems of wear and corrosion. The paper covers the alloy design fundamentals and discusses the pertinent wear properties and general corrosion resistance compared to traditional wear resistant materials. Proven applications, with particular reference to petroleum and petro-chemical areas are discussed. Potential applications are also cited.INTRODUCTION. Oil and gas production, refining and its down stream processes rely heavily on wear and corrosion resistant materials for economical and efficient operations. The properties needed for such materials pose a great challenge to alloy designers. Improvements in one attribute are often accomplished at the expense of other desirable material properties. To give an example, improving wear resistance of materials often results in reduced toughness, weldability and corrosion resistance.Alloy designers have, in recent years, developed several classes of alloys that aim to address this issue. Although certain compromises in properties still had to be made, the new alloys have met the needs in some applications. They are beginning to gain acceptance after favorable laboratory test results and field experience.CORROSIONAND WEAR ENVIRONMENTS IN THE OIL INDUSTRYOil Production. Operating conditions in drilling pose a very severe abrasion and erosion environment. The wear is very severe and often constitutes the primary failure mechanism. Production of oil involves drilling through hard strata, rock, and sand at great depths under very high pressures. The drill bits and hammers encounter severe abrasion from rubbing against hard rock. The drilling mud, which contains water laden with sand, also causes severe abrasion on oil drilling parts, such as, bits, bearing areas, gages and couplings. In addition, there is the added aggressive nature of acids like hydrochloric, hydrofluoric and formic that are injected to improve the formation permeability. Concentrated brine is also utilized to balance the formation pressures. The acids and brine apart from increasing the general corrosion, promote pitting, crevice, galvanic and stress corrosion cracking in austenitic materials. The sour gas, H2S, and CO2 are also severe corrodants. Typical examples of such components are tricone drill bits and roto-percussive hammer bits, tricone bearings, stabilizers, couplings, and mud pumps. Components like gate valves (gates and seats) in well heads are subject to very hostile conditions of high pressure, corrosion, erosion and galling. Reciprocating pump plungers also operate under similar conditions.Oil Refining. Corrosion and erosion-corrosion predominate the material degradation mechanisms of hard metals in the refining environments. Corrosion can synergistically act with a variety of wear mechanisms, i.e., abrasion, erosion and cavitation, to hasten the degradation.} \field{day}{9} \field{eventtitle}{Corrosion97} \field{langid}{english} \field{month}{3} \field{title}{Recent {{Developments In Wear And Corrosion Resistant Alloys For Oil Industry}}} \field{urlday}{2} \field{urlmonth}{6} \field{urlyear}{2025} \field{year}{1997} \field{dateera}{ce} \field{urldateera}{ce} \verb{urlraw} \verb https://dx.doi.org/ \endverb \verb{url} \verb https://dx.doi.org/ \endverb \endentry \entry{alimardaniEffectLocalizedDynamic2010}{article}{}{} \name{author}{4}{}{% {{hash=b1d020be51ce7b141b4cf03868da762c}{% family={Alimardani}, familyi={A\bibinitperiod}, given={Masoud}, giveni={M\bibinitperiod}}}% {{hash=44e10f283ada211ed0a7aa6d9913d23f}{% family={Fallah}, familyi={F\bibinitperiod}, given={Vahid}, giveni={V\bibinitperiod}}}% {{hash=5aaf85cb279ac1471a04ce9c932a1122}{% family={Khajepour}, familyi={K\bibinitperiod}, given={Amir}, giveni={A\bibinitperiod}}}% {{hash=88451951b0b3c1cc4383d3cebfc151ac}{% family={Toyserkani}, familyi={T\bibinitperiod}, given={Ehsan}, giveni={E\bibinitperiod}}}% } \strng{namehash}{86846ed827567cfd839f7c014178ad64} \strng{fullhash}{6d9fe21dc14c2e93f67f0a8f73f5082f} \strng{fullhashraw}{6d9fe21dc14c2e93f67f0a8f73f5082f} \strng{bibnamehash}{6d9fe21dc14c2e93f67f0a8f73f5082f} \strng{authorbibnamehash}{6d9fe21dc14c2e93f67f0a8f73f5082f} \strng{authornamehash}{86846ed827567cfd839f7c014178ad64} \strng{authorfullhash}{6d9fe21dc14c2e93f67f0a8f73f5082f} \strng{authorfullhashraw}{6d9fe21dc14c2e93f67f0a8f73f5082f} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In laser cladding, high cooling rates create outcomes with superior mechanical and metallurgical properties. However, this characteristic along with the additive nature of the process significantly contributes to the formation of thermal stresses which are the main cause of any potential delamination and crack formation across the deposited layers. This drawback is more prominent for additive materials such as Stellite 1 which are by nature crack-sensitive during the hardfacing process. In this work, parallel to the experimental investigation, a numerical model is used to study the temperature distributions and thermal stresses throughout the deposition of Stellite 1 for hardfacing application. To manage the thermal stresses, the effect of preheating the substrate in a localized dynamic fashion is investigated. The numerical and experimental analyses are conducted by the deposition of Stellite 1 powder on the substrate of AISI-SAE 4340 alloy steel using a 1.1kW fiber laser. Experimental results confirm that by preheating the substrate a crack-free coating layer of Stellite 1 well-bonded to the substrate with a uniform dendritic structure, well-distributed throughout the deposited layer, can be obtained contrary to non-uniform structures formed in the coating of the non-preheated substrate with several cracks.} \field{day}{25} \field{issn}{0257-8972} \field{journaltitle}{Surface and Coatings Technology} \field{month}{8} \field{number}{23} \field{shortjournal}{Surface and Coatings Technology} \field{title}{The Effect of Localized Dynamic Surface Preheating in Laser Cladding of {{Stellite}} 1} \field{urlday}{2} \field{urlmonth}{6} \field{urlyear}{2025} \field{volume}{204} \field{year}{2010} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{3911\bibrangedash 3919} \range{pages}{9} \verb{doi} \verb 10.1016/j.surfcoat.2010.05.009 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/K53B3HAD/Alimardani et al. - 2010 - The effect of localized dynamic surface preheating in laser cladding of Stellite 1.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/4CRZPTTG/S0257897210003701.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0257897210003701 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0257897210003701 \endverb \keyw{Crack formation,Hardfacing alloys,Laser cladding,Preheating process,Temperature and thermal stress fields} \endentry \entry{ashworthMicrostructurePropertyRelationships1999}{article}{}{} \name{author}{3}{}{% {{hash=a0a9668f5a93080c8425a8cf80e9d0d2}{% family={Ashworth}, familyi={A\bibinitperiod}, given={M.A.}, giveni={M\bibinitperiod}}}% {{hash=27753a82b6390957cb920ec5052f0810}{% family={Jacobs}, familyi={J\bibinitperiod}, given={M.H.}, giveni={M\bibinitperiod}}}% {{hash=0e68382b25995f7a55c9b600def7c365}{% family={Davies}, familyi={D\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% } \list{publisher}{1}{% {SAGE Publications}% } \strng{namehash}{abac9b3a3bd887c0c8dedb4a4e169c92} \strng{fullhash}{68dce5901af799f73fc399cf947f81b9} \strng{fullhashraw}{68dce5901af799f73fc399cf947f81b9} \strng{bibnamehash}{68dce5901af799f73fc399cf947f81b9} \strng{authorbibnamehash}{68dce5901af799f73fc399cf947f81b9} \strng{authornamehash}{abac9b3a3bd887c0c8dedb4a4e169c92} \strng{authorfullhash}{68dce5901af799f73fc399cf947f81b9} \strng{authorfullhashraw}{68dce5901af799f73fc399cf947f81b9} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In the present paper the microstructure and properties of a range of hipped Stellite powders are investigated, the basic aim of the study being to generate a materia/property database to facilitate alloy selection for potential applications involving net shape component manufacture. Particular attention is paid to the morphology, particle size distribution, and surface composition of the as atomised powders and their effect on subsequent consolidation. The consolidated powders are fully characterised in terms of microstructure and the composition and distribution of secondary phases. The effect of hipping temperature on the microstructure, hardness, and tensile properties of the powders are discussed in terms of the optimum processing temperature for the various alloys.} \field{day}{1} \field{issn}{0032-5899} \field{journaltitle}{Powder Metallurgy} \field{langid}{english} \field{month}{3} \field{number}{3} \field{title}{Microstructure and Property Relationships in Hipped {{Stellite}} Powders} \field{urlday}{3} \field{urlmonth}{4} \field{urlyear}{2025} \field{volume}{42} \field{year}{1999} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{243\bibrangedash 249} \range{pages}{7} \verb{doi} \verb 10.1179/003258999665585 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/KGQ83Q7C/Ashworth et al. - 1999 - Microstructure and property relationships in hipped Stellite powders.pdf \endverb \verb{urlraw} \verb https://journals.sagepub.com/action/showAbstract \endverb \verb{url} \verb https://journals.sagepub.com/action/showAbstract \endverb \endentry \entry{bunchCorrosionGallingResistant1989}{inproceedings}{}{} \name{author}{3}{}{% {{hash=ff8de9c468efb7eab8b92e573d3949ed}{% family={Bunch}, familyi={B\bibinitperiod}, given={P.\bibnamedelimi O.}, giveni={P\bibinitperiod\bibinitdelim O\bibinitperiod}}}% {{hash=47f88033d1313a3ac56378baefb344e4}{% family={Hartmann}, familyi={H\bibinitperiod}, given={M.\bibnamedelimi P.}, giveni={M\bibinitperiod\bibinitdelim P\bibinitperiod}}}% {{hash=7f4198582fc42b8ddab60cd433790594}{% family={Bednarowicz}, familyi={B\bibinitperiod}, given={T.\bibnamedelimi A.}, giveni={T\bibinitperiod\bibinitdelim A\bibinitperiod}}}% } \list{publisher}{1}{% {OnePetro}% } \strng{namehash}{b4088224b2a9ea87c42c7ab641ebe2de} \strng{fullhash}{27ba512d074ac1ae4276e7a91ea23549} \strng{fullhashraw}{27ba512d074ac1ae4276e7a91ea23549} \strng{bibnamehash}{27ba512d074ac1ae4276e7a91ea23549} \strng{authorbibnamehash}{27ba512d074ac1ae4276e7a91ea23549} \strng{authornamehash}{b4088224b2a9ea87c42c7ab641ebe2de} \strng{authorfullhash}{27ba512d074ac1ae4276e7a91ea23549} \strng{authorfullhashraw}{27ba512d074ac1ae4276e7a91ea23549} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{ABSTRACT. Application of corrosion resistant hardfacing materials are required to maintain exceptional reliability for metal to metal sealing in high pressure gate valves used for offshore production wells. New hardfacing materials have been developed and tailored for use where defense against degradation effects of high temperature, high pressure, H2S, C02, free sulfur and brine environments is required. Using a plasma transferred arc (PTA) weld process, new hardfacings of Stellite cobalt base materials have been successfully applied to nickel base alloy substrates. These hardfacings provide exceptional corrosion resistance over previously used materials produced by spray and fuse as well as high velocity combustion spray (} \field{day}{1} \field{eventtitle}{Offshore {{Technology Conference}}} \field{langid}{english} \field{month}{5} \field{title}{Corrosion/{{Galling Resistant Hardfacing Materials}} for {{Offshore Production Valves}}} \field{urlday}{2} \field{urlmonth}{6} \field{urlyear}{2025} \field{year}{1989} \field{dateera}{ce} \field{urldateera}{ce} \verb{doi} \verb 10.4043/6070-MS \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/CHLVERIZ/Bunch et al. - 1989 - CorrosionGalling Resistant Hardfacing Materials for Offshore Production Valves.pdf \endverb \verb{urlraw} \verb https://dx.doi.org/10.4043/6070-MS \endverb \verb{url} \verb https://dx.doi.org/10.4043/6070-MS \endverb \endentry \entry{desaiEffectCarbideSize1984}{article}{}{} \name{author}{4}{}{% {{hash=fc05df304d9bc11398a5c124af37591d}{% family={Desai}, familyi={D\bibinitperiod}, given={V.\bibnamedelimi M.}, giveni={V\bibinitperiod\bibinitdelim M\bibinitperiod}}}% {{hash=ec550afc1e3aea4900fb58655a64f6da}{% family={Rao}, familyi={R\bibinitperiod}, given={C.\bibnamedelimi M.}, giveni={C\bibinitperiod\bibinitdelim M\bibinitperiod}}}% {{hash=33b6be2f67c7c521e0d9dd2e94cb03fa}{% family={Kosel}, familyi={K\bibinitperiod}, given={T.\bibnamedelimi H.}, giveni={T\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=1ad7f5a75d8dc26e538ca7e4d233e622}{% family={Fiore}, familyi={F\bibinitperiod}, given={N.\bibnamedelimi F.}, giveni={N\bibinitperiod\bibinitdelim F\bibinitperiod}}}% } \strng{namehash}{aeae2b334e415789011cf05b2beda57d} \strng{fullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} \strng{fullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} \strng{bibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} \strng{authorbibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} \strng{authornamehash}{aeae2b334e415789011cf05b2beda57d} \strng{authorfullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} \strng{authorfullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{A study of the effect of carbide size on the abrasion resistance of two cobalt-base powder metallurgy alloys, alloys 6 and 19, was conducted using low stress abrasion with a relatively hard abrasive, A12O3. Specimens of each alloy were produced with different carbide sizes but with a constant carbide volume fraction. The wear test results show a monotonie decrease in wear rate with increasing carbide size. Scanning electron microscopy of the worn surfaces and of wear debris particles shows that the primary material removal mechanism is micromachining. Small carbides provide little resistance to micromachining because of the fact that many of them are contained entirely in the volume of micromachining chips. The large carbides must be directly cut by the abrasive particles. Other less frequently observed material removal mechanisms included direct carbide pull-out and the formation of large pits in fine carbide specimens. These processes are considered secondary in the present work, but they may have greater importance in wear by relatively soft abrasives which do not cut chips from the carbide phase of these alloys. Some indication of this is provided by limited studies using a relatively soft abrasive, rounded quartz.} \field{annotation}{59 citations (Semantic Scholar/DOI) [2025-04-12]} \field{day}{15} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{2} \field{number}{1} \field{shortjournal}{Wear} \field{title}{Effect of Carbide Size on the Abrasion of Cobalt-Base Powder Metallurgy Alloys} \field{urlday}{17} \field{urlmonth}{11} \field{urlyear}{2024} \field{volume}{94} \field{year}{1984} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{89\bibrangedash 101} \range{pages}{13} \verb{doi} \verb 10.1016/0043-1648(84)90168-6 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/NVMRPKQI/Sreedhar et al. - 2017 - Cavitation damage Theory and measurements – A review.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/TA9LLNAT/Desai et al. - 1984 - Effect of carbide size on the abrasion of cobalt-base powder metallurgy alloys.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/V2XEQJ5X/0043164884901686.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 \endverb \keyw{Cavitation,Cavitation equipment,Damage measurement,Instrumentation,Sodium} \endentry \entry{ferozhkhanMetallurgicalStudyStellite2017}{article}{}{} \name{author}{3}{}{% {{hash=bed071d3745587c303d1b4411281a295}{% family={Ferozhkhan}, familyi={F\bibinitperiod}, given={Mohammed\bibnamedelima Mohaideen}, giveni={M\bibinitperiod\bibinitdelim M\bibinitperiod}}}% {{hash=fdb6a42317e0e10a267ce7c918a63e11}{% family={Kumar}, familyi={K\bibinitperiod}, given={Kottaimathan\bibnamedelima Ganesh}, giveni={K\bibinitperiod\bibinitdelim G\bibinitperiod}}}% {{hash=250edfbd96cbc7ebd974dd11a2098198}{% family={Ravibharath}, familyi={R\bibinitperiod}, given={Rajanbabu}, giveni={R\bibinitperiod}}}% } \strng{namehash}{7a694c7ba4c57888494ddc3675c7d70c} \strng{fullhash}{c63a5ee4b2edf1e71712795226de5b1a} \strng{fullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} \strng{bibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} \strng{authorbibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} \strng{authornamehash}{7a694c7ba4c57888494ddc3675c7d70c} \strng{authorfullhash}{c63a5ee4b2edf1e71712795226de5b1a} \strng{authorfullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{309-16L stainless steel was deposited over base metal Grade 91 steel (9Cr–1Mo) as buffer layer by shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and flux cored arc welding processes, and then, Stellite 6 (Co–Cr alloy) was coated on stainless steel buffer by SMAW, GTAW and plasma transferred arc welding processes. Stellite 6 coatings were characterized using optical microscope, Vickers hardness tester and optical emission spectrometer, respectively. The FCA deposit has less heat-affected zone and uniform hardness than SMA and GTA deposits. The buffer layer has reduced the formation of any surface cracks and delamination near the fusion zones. The microstructure of Stellite 6 consists of dendrites of Co solid solution and carbides secretion in the interdendrites of Co and Cr matrix. Electron-dispersive spectroscopy line scan has been conducted to analyse the impact of alloying elements in the fusion line and Stellite 6 deposits. It was observed that dilution of Fe in PTA-deposited Stellite 6 was lesser than SMA and GTA deposits and uniform hardness of 600–650~\$\$\textbackslash hbox \{HV\}\_\{0.3\}\$\$was obtained from PTA deposit. The chemical analysis resulted in alloy composition of PTA deposit has nominal percentage in comparison with consumable composition while GTA and SMA deposits has high dilution of Fe and Ni.} \field{day}{1} \field{issn}{2191-4281} \field{journaltitle}{Arabian Journal for Science and Engineering} \field{langid}{english} \field{month}{5} \field{number}{5} \field{shortjournal}{Arab J Sci Eng} \field{title}{Metallurgical {{Study}} of {{Stellite}} 6 {{Cladding}} on 309-{{16L Stainless Steel}}} \field{urlday}{31} \field{urlmonth}{3} \field{urlyear}{2025} \field{volume}{42} \field{year}{2017} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{2067\bibrangedash 2074} \range{pages}{8} \verb{doi} \verb 10.1007/s13369-017-2457-7 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/8MQJ3FGI/Ferozhkhan et al. - 2017 - Metallurgical Study of Stellite 6 Cladding on 309-16L Stainless Steel.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/s13369-017-2457-7 \endverb \verb{url} \verb https://doi.org/10.1007/s13369-017-2457-7 \endverb \keyw{Dilution,EDS,Hardfacing,Interdendrites,Stellite} \endentry \entry{pacquentinTemperatureInfluenceRepair2025}{article}{}{} \name{author}{5}{}{% {{hash=096b7ba62dd31bb3abb4c7daa2ba6477}{% family={Pacquentin}, familyi={P\bibinitperiod}, given={Wilfried}, giveni={W\bibinitperiod}}}% {{hash=9e420ee86aa957c365d57085e999996c}{% family={Wident}, familyi={W\bibinitperiod}, given={Pierre}, giveni={P\bibinitperiod}}}% {{hash=268ededdba463184d10a8f5532d5cf81}{% family={Varlet}, familyi={V\bibinitperiod}, given={Jérôme}, giveni={J\bibinitperiod}}}% {{hash=b24f3669f2a577f8062abf9d04e0e179}{% family={Cailloux}, familyi={C\bibinitperiod}, given={Thomas}, giveni={T\bibinitperiod}}}% {{hash=ba3f789128096170532622dc53c3bbd0}{% family={Maskrot}, familyi={M\bibinitperiod}, given={Hicham}, giveni={H\bibinitperiod}}}% } \strng{namehash}{f57606f1b71f32267dc7727ee385b008} \strng{fullhash}{0cc41d1605707534d43f79ae97691cbc} \strng{fullhashraw}{0cc41d1605707534d43f79ae97691cbc} \strng{bibnamehash}{0cc41d1605707534d43f79ae97691cbc} \strng{authorbibnamehash}{0cc41d1605707534d43f79ae97691cbc} \strng{authornamehash}{f57606f1b71f32267dc7727ee385b008} \strng{authorfullhash}{0cc41d1605707534d43f79ae97691cbc} \strng{authorfullhashraw}{0cc41d1605707534d43f79ae97691cbc} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Additive manufacturing (AM) is a proven time- and cost-effective method for repairing parts locally damaged after e.g. repetitive friction wear or corrosion. Repairing a hardfacing coating using AM technologies presents however several simultaneous challenges arising from the complex geometry and a high probability of crack formation due to process-induced stress. We address the repair of a cobalt-based Stellite™ 6 hardfacing coating on an AISI 316L substrate performed using Laser Powder Directed Energy Deposition (LP-DED) and investigate the influence of key process features and parameters. We describe our process which successfully prevents crack formation both during and after the repair, highlighting the design of the preliminary part machining phase, induction heating of an extended part volume during the laser repair phase and the optimal scanning strategy. Local characterization using non-destructive testing, Vickers hardness measurements and microstructural examinations by scanning electron microscopy (SEM) show an excellent metallurgical quality of the repair and its interface with the original part. In addition, we introduce an innovative process qualification test assessing the repair quality and innocuity, which is based on the global response to induced cracks and probes the absence of crack attraction by the repair (ACAR11ACAR stands for absence of crack attraction by the repair.). Here this ACAR test reveals a slight difference in mechanical behavior between the repair and the original coating which motivates further work to eventually make the repair imperceptible.} \field{day}{1} \field{issn}{2666-3309} \field{journaltitle}{Journal of Advanced Joining Processes} \field{month}{6} \field{shortjournal}{Journal of Advanced Joining Processes} \field{title}{Temperature Influence on the Repair of a Hardfacing Coating Using Laser Metal Deposition and Assessment of the Repair Innocuity} \field{urlday}{31} \field{urlmonth}{3} \field{urlyear}{2025} \field{volume}{11} \field{year}{2025} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{100284} \range{pages}{1} \verb{doi} \verb 10.1016/j.jajp.2025.100284 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/VGK54WQB/Pacquentin et al. - 2025 - Temperature influence on the repair of a hardfacing coating using laser metal deposition and assessm.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/XDXCJU4L/S2666330925000056.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 \endverb \keyw{Additive manufacturing,Direct laser deposition,Hardfacing coating,Mechanical characterization,Repair,Repair innocuity assessment} \endentry \entry{ratiaComparisonSlidingWear2019}{article}{}{} \name{author}{7}{}{% {{hash=4d8d77bd60a2e1fd293e809631bc5a84}{% family={Ratia}, familyi={R\bibinitperiod}, given={Vilma\bibnamedelima L.}, giveni={V\bibinitperiod\bibinitdelim L\bibinitperiod}}}% {{hash=84a91dba5410e2e8f67915c4c17aea08}{% family={Zhang}, familyi={Z\bibinitperiod}, given={Deen}, giveni={D\bibinitperiod}}}% {{hash=f9e5a7fad20d40241ed0f25f05849207}{% family={Carrington}, familyi={C\bibinitperiod}, given={Matthew\bibnamedelima J.}, giveni={M\bibinitperiod\bibinitdelim J\bibinitperiod}}}% {{hash=a61a195bd0ed9f39c9d446f02d7b9592}{% family={Daure}, familyi={D\bibinitperiod}, given={Jaimie\bibnamedelima L.}, giveni={J\bibinitperiod\bibinitdelim L\bibinitperiod}}}% {{hash=d9e3c0caaa2d6903c488a2973cea1fd8}{% family={McCartney}, familyi={M\bibinitperiod}, given={D.\bibnamedelimi Graham}, giveni={D\bibinitperiod\bibinitdelim G\bibinitperiod}}}% {{hash=d69de7eb40c8f8c0c78825838cd1f8ee}{% family={Shipway}, familyi={S\bibinitperiod}, given={Philip\bibnamedelima H.}, giveni={P\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=b150a22a65dc3516b89a2bd86a0e25ff}{% family={Stewart}, familyi={S\bibinitperiod}, given={David\bibnamedelima A.}, giveni={D\bibinitperiod\bibinitdelim A\bibinitperiod}}}% } \strng{namehash}{0f5fdf8e51bf5515e4025351773003d8} \strng{fullhash}{2e0376be46be3b8d245d5ab5620f4ca2} \strng{fullhashraw}{2e0376be46be3b8d245d5ab5620f4ca2} \strng{bibnamehash}{2e0376be46be3b8d245d5ab5620f4ca2} \strng{authorbibnamehash}{2e0376be46be3b8d245d5ab5620f4ca2} \strng{authornamehash}{0f5fdf8e51bf5515e4025351773003d8} \strng{authorfullhash}{2e0376be46be3b8d245d5ab5620f4ca2} \strng{authorfullhashraw}{2e0376be46be3b8d245d5ab5620f4ca2} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Cobalt-based alloys such as Stellite 3 and Stellite 6 are widely used to protect stainless steel surfaces in primary circuit nuclear reactor applications where high resistance to wear and corrosion are required. In this study, self-mated sliding wear of Stellite 3 and Stellite 6 consolidated by hot isostatic pressing were compared. Tests were performed with a pin-on-disc apparatus enclosed in a water-submerged autoclave environment and wear was measured from room temperature up to 250\,°C (a representative pressurized water reactor environment). Both alloys exhibit a microstructure of micron-sized carbides embedded in a cobalt-rich matrix. Stellite 3 (higher tungsten and carbon content) contains M7C3 and an eta (η) -carbide whereas Stellite 6 contains only M7C3. Furthermore, the former has a significantly higher carbide volume fraction and hardness than the latter. Both alloys show a significant increase in the wear rate as the temperature is increased but Stellite 3 has a higher wear resistance over the entire range; at 250\,°C the wear rate of Stellite 6 is more than five times that of Stellite 3. There is only a minimal formation of a transfer layer on the sliding surfaces but electron backscatter diffraction on cross-sections through the wear scar revealed that wear causes partial transformation of the cobalt matrix from fcc to hcp in both alloys over the entire temperature range. It is proposed that the acceleration of wear with increasing temperature in the range studied is associated with a tribocorrosion mechanism and that the higher carbide fraction in Stellite 3 resulted in its reduced wear rate compared to Stellite 6.} \field{day}{30} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{4} \field{series}{22nd {{International Conference}} on {{Wear}} of {{Materials}}} \field{shortjournal}{Wear} \field{title}{Comparison of the Sliding Wear Behaviour of Self-Mated {{HIPed Stellite}} 3 and {{Stellite}} 6 in a Simulated {{PWR}} Water Environment} \field{urlday}{30} \field{urlmonth}{6} \field{urlyear}{2024} \field{volume}{426--427} \field{year}{2019} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{1222\bibrangedash 1232} \range{pages}{11} \verb{doi} \verb 10.1016/j.wear.2019.01.116 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/JJY7XQHC/Ratia et al. - 2019 - Comparison of the sliding wear behaviour of self-m.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/VC7Z75QD/S004316481930211X.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S004316481930211X \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S004316481930211X \endverb \keyw{Cobalt-based alloys,Electron backscatter diffraction,HIP,Nuclear,Stellite} \endentry \entry{zhangFrictionWearCharacterization2002}{article}{}{} \name{author}{2}{}{% {{hash=9ac5c6e1891a9d327b6cf9dce9924eaa}{% family={Zhang}, familyi={Z\bibinitperiod}, given={K}, giveni={K\bibinitperiod}}}% {{hash=cb8741204d7e12b6db11ee35f025c97c}{% family={Battiston}, familyi={B\bibinitperiod}, given={L}, giveni={L\bibinitperiod}}}% } \strng{namehash}{bf171f4e97c3179e4c0d9908cf319a1f} \strng{fullhash}{bf171f4e97c3179e4c0d9908cf319a1f} \strng{fullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} \strng{bibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} \strng{authorbibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} \strng{authornamehash}{bf171f4e97c3179e4c0d9908cf319a1f} \strng{authorfullhash}{bf171f4e97c3179e4c0d9908cf319a1f} \strng{authorfullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{A full-journal submerged bearing test rig was built to evaluate the friction and wear behavior of materials in zinc alloy baths. Some cobalt- and iron-based superalloys were tested using this rig at conditions similar to those of a continuous galvanizing operation (load and bath chemistry). Metallographic and chemical analyses were conducted on tested samples to characterize the wear. It was found that a commonly used cobalt-based material (Stellite \#6) not only suffered considerable wear but also reacted with zinc baths to form intermetallic compounds. Other cobalt- and iron-based superalloys appeared to have negligible reaction with the zinc baths in the short-term tests, but cracks developed in the sub-surface, suggesting that the materials mainly experienced surface fatigue wear. The commonly used cobalt-based superalloy mostly experienced abrasive wear.} \field{day}{1} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{2} \field{number}{3} \field{shortjournal}{Wear} \field{title}{Friction and Wear Characterization of Some Cobalt- and Iron-Based Superalloys in Zinc Alloy Baths} \field{urlday}{1} \field{urlmonth}{4} \field{urlyear}{2025} \field{volume}{252} \field{year}{2002} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{332\bibrangedash 344} \range{pages}{13} \verb{doi} \verb 10.1016/S0043-1648(01)00889-4 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/3L8QFNAJ/Zhang and Battiston - 2002 - Friction and wear characterization of some cobalt- and iron-based superalloys in zinc alloy baths.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/PJJ8KSP9/S0043164801008894.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 \endverb \keyw{Friction and wear,Galvanizing,Submerged hardware,Superalloys} \endentry \entry{ahmedSlidingWearBlended2021a}{article}{}{} \name{author}{3}{}{% {{hash=25252d98cf2cdf2878867f5c5a6110fb}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Rehan}, giveni={R\bibinitperiod}}}% {{useprefix=true,hash=75bf7913ab7463c6e3734bec975046fc}{% family={Villiers\bibnamedelima Lovelock}, familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, given={H.\bibnamedelimi L.}, giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, prefix={de}, prefixi={d\bibinitperiod}}}% {{hash=08f82b06323eef247f0470c04e6e26df}{% family={{Susan Davies}}, familyi={S\bibinitperiod}}}% } \strng{namehash}{9cc1d49cc1572c67ddbd4624ee55ebb2} \strng{fullhash}{88d4a52ab74c666b6db3cc5788c9d889} \strng{fullhashraw}{88d4a52ab74c666b6db3cc5788c9d889} \strng{bibnamehash}{88d4a52ab74c666b6db3cc5788c9d889} \strng{authorbibnamehash}{88d4a52ab74c666b6db3cc5788c9d889} \strng{authornamehash}{9cc1d49cc1572c67ddbd4624ee55ebb2} \strng{authorfullhash}{88d4a52ab74c666b6db3cc5788c9d889} \strng{authorfullhashraw}{88d4a52ab74c666b6db3cc5788c9d889} \field{extraname}{2} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{This investigation reports on the tribomechanical evaluations of a Co-based alloy obtained by the hot isostatic pressing (HIPing) of a blend of two standard gas atomized cobalt alloy powders. A HIPed blend of Stellite 6 and Stellite 20 was used to investigate the effect of varying the C, Cr, and W content simultaneously on the structure-property relationships. Microstructural evaluations involved scanning electron microscopy and x-ray diffraction. Experimental evaluations were conducted using hardness, impact, tensile, abrasive wear and sliding wear tests to develop an understanding of the mechanical and tribological performance of the alloys. Results are discussed in terms of the failure modes for the mechanical tests, and wear mechanisms for the tribological tests. This study indicates that powder blends can be used to design for a desired combination of mechanical strength and wear properties in these HIPed alloys. Specific relationships were observed between the alloy composition and carbide content, hardness, impact energy and wear resistance. There was a linear relationship between the weighted W- and C-content and the carbide fraction. The abrasive wear performance also showed a linear relationship with the weighted alloy composition. The pin-on-disc and ball-on-flat experiments revealed a more complex relationship between the alloy composition and the wear rate.} \field{day}{15} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{2} \field{shortjournal}{Wear} \field{title}{Sliding Wear of Blended Cobalt Based Alloys} \field{urlday}{13} \field{urlmonth}{7} \field{urlyear}{2024} \field{volume}{466--467} \field{year}{2021} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{203533} \range{pages}{1} \verb{doi} \verb 10.1016/j.wear.2020.203533 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/J6WSYYDU/Ahmed et al. - 2021 - Sliding wear of blended cobalt based alloys.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/KQ8WAAHY/S0043164820309923.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 \endverb \keyw{Blending,Hardness,HIPing,Powder metallurgy,Sliding wear,Stellite alloy} \endentry \entry{crookCobaltbaseAlloysResist1994}{article}{}{} \name{author}{1}{}{% {{hash=16985215fbfc4124567154cd4ca61487}{% family={Crook}, familyi={C\bibinitperiod}, given={P}, giveni={P\bibinitperiod}}}% } \list{location}{1}{% {Materials Park, OH}% } \list{publisher}{1}{% {ASM International}% } \strng{namehash}{16985215fbfc4124567154cd4ca61487} \strng{fullhash}{16985215fbfc4124567154cd4ca61487} \strng{fullhashraw}{16985215fbfc4124567154cd4ca61487} \strng{bibnamehash}{16985215fbfc4124567154cd4ca61487} \strng{authorbibnamehash}{16985215fbfc4124567154cd4ca61487} \strng{authornamehash}{16985215fbfc4124567154cd4ca61487} \strng{authorfullhash}{16985215fbfc4124567154cd4ca61487} \strng{authorfullhashraw}{16985215fbfc4124567154cd4ca61487} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{0882-7958} \field{journaltitle}{Cobalt-base alloys resist wear, corrosion, and heat} \field{number}{4} \field{shortjournal}{Adv. mater. process} \field{title}{Cobalt-Base Alloys Resist Wear, Corrosion, and Heat} \field{volume}{145} \field{year}{1994} \field{dateera}{ce} \field{pages}{27\bibrangedash 30} \range{pages}{4} \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/HH93QB32/index.html \endverb \endentry \entry{wuMicrostructureEvolutionCrack2019}{article}{}{} \name{author}{6}{}{% {{hash=22fd84b8276575e01ba678bb2095dc23}{% family={Wu}, familyi={W\bibinitperiod}, given={Ying}, giveni={Y\bibinitperiod}}}% {{hash=92f7474e36f4f2b59a14e85c0e738e40}{% family={Liu}, familyi={L\bibinitperiod}, given={Yan}, giveni={Y\bibinitperiod}}}% {{hash=92f386b2333cf6bddfa01a270cab627d}{% family={Chen}, familyi={C\bibinitperiod}, given={Hui}, giveni={H\bibinitperiod}}}% {{hash=7608dbf6c54dadf166f77046db3c64a6}{% family={Chen}, familyi={C\bibinitperiod}, given={Yong}, giveni={Y\bibinitperiod}}}% {{hash=cea99e3ed74f7ce08426da7357f37db1}{% family={Li}, familyi={L\bibinitperiod}, given={Hongyu}, giveni={H\bibinitperiod}}}% {{hash=9562d4d078c3e4bd368355aa7042e73d}{% family={Yi}, familyi={Y\bibinitperiod}, given={Wei}, giveni={W\bibinitperiod}}}% } \strng{namehash}{626d28be86a459b8197a085a23e900e9} \strng{fullhash}{f8aabef32d975005a0b670cdbcab980e} \strng{fullhashraw}{f8aabef32d975005a0b670cdbcab980e} \strng{bibnamehash}{f8aabef32d975005a0b670cdbcab980e} \strng{authorbibnamehash}{f8aabef32d975005a0b670cdbcab980e} \strng{authornamehash}{626d28be86a459b8197a085a23e900e9} \strng{authorfullhash}{f8aabef32d975005a0b670cdbcab980e} \strng{authorfullhashraw}{f8aabef32d975005a0b670cdbcab980e} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In order to reveal the mechanism of microstructure evolution and crack propagation in laser-deposited Stellite 6 alloys, a quenching thermal fatigue test was conducted. Various detection methods were applied to observe differences between the coatings as deposited and after thermal fatigue. The results showed that the γ\,→\,ε martensitic transformation occurred in the as-deposited γ-Co matrix during the thermal fatigue process, driven by a fast cooling and thermal stress. The generated ε-Co phase presented variant selection, obeying Schmidt's law. In the ε-Co phase, the slip activity derived from different 111γ112¯γ slipping systems that produced stacking faults and planar defects during the phase transformation. In addition, the stacking faults on \{1 1 1\}γ planes promoted the precipitation of directional M7C3 fine particle carbides. The net-like eutectic structures and γ/ε interfaces acted as paths for thermal crack propagation.} \field{day}{25} \field{issn}{0257-8972} \field{journaltitle}{Surface and Coatings Technology} \field{month}{1} \field{shortjournal}{Surface and Coatings Technology} \field{title}{Microstructure Evolution and Crack Propagation Feature in Thermal Fatigue of Laser-Deposited {{Stellite}} 6 Coating for Brake Discs} \field{urlday}{17} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{358} \field{year}{2019} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{98\bibrangedash 107} \range{pages}{10} \verb{doi} \verb 10.1016/j.surfcoat.2018.11.011 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/D6M9VHEQ/Wu et al. - 2019 - Microstructure evolution and crack propagation feature in thermal fatigue of laser-deposited Stellit.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/3S35F7GV/S0257897218312210.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0257897218312210 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0257897218312210 \endverb \keyw{Crack propagation,Martensitic transformation,Stellite 6 coating,Thermal fatigue} \endentry \entry{lizarragaFirstPrinciplesTheory2017}{article}{}{} \name{author}{6}{}{% {{hash=f117c5ef435a90b7ce51f9fe967ac07a}{% family={Lizárraga}, familyi={L\bibinitperiod}, given={Raquel}, giveni={R\bibinitperiod}}}% {{hash=a21189cf30e916dfbe1288806fdad4bd}{% family={Pan}, familyi={P\bibinitperiod}, given={Fan}, giveni={F\bibinitperiod}}}% {{hash=115ecb49dcde7dd57ff55112ebc9b4c4}{% family={Bergqvist}, familyi={B\bibinitperiod}, given={Lars}, giveni={L\bibinitperiod}}}% {{hash=072785867b3e39683a3caa60c95abeac}{% family={Holmström}, familyi={H\bibinitperiod}, given={Erik}, giveni={E\bibinitperiod}}}% {{hash=6bb482d66cd0fb38b57d1dc16e99e022}{% family={Gercsi}, familyi={G\bibinitperiod}, given={Zsolt}, giveni={Z\bibinitperiod}}}% {{hash=817cc16f0242d12c560b74837f2b369f}{% family={Vitos}, familyi={V\bibinitperiod}, given={Levente}, giveni={L\bibinitperiod}}}% } \list{publisher}{1}{% {Nature Publishing Group}% } \strng{namehash}{963a71183c68a38062270142439bfbc0} \strng{fullhash}{26067a717c48b2e4d22abc5f9843ede5} \strng{fullhashraw}{26067a717c48b2e4d22abc5f9843ede5} \strng{bibnamehash}{26067a717c48b2e4d22abc5f9843ede5} \strng{authorbibnamehash}{26067a717c48b2e4d22abc5f9843ede5} \strng{authornamehash}{963a71183c68a38062270142439bfbc0} \strng{authorfullhash}{26067a717c48b2e4d22abc5f9843ede5} \strng{authorfullhashraw}{26067a717c48b2e4d22abc5f9843ede5} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at \textasciitilde 700\,K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion. Our analysis of the energy of the phases shows that magnetic effects alone cannot drive the fcc-hcp transition in Co and that the largest contribution to the stabilization of the fcc phase comes from the vibration of the ionic lattice. By including all the contributions to the free energy considered here we obtain a theoretical transition temperature of 825\,K.} \field{day}{19} \field{issn}{2045-2322} \field{journaltitle}{Scientific Reports} \field{langid}{english} \field{month}{6} \field{number}{1} \field{shortjournal}{Sci Rep} \field{title}{First {{Principles Theory}} of the Hcp-Fcc {{Phase Transition}} in {{Cobalt}}} \field{urlday}{18} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{7} \field{year}{2017} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{3778} \range{pages}{1} \verb{doi} \verb 10.1038/s41598-017-03877-5 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/IAB44AJ8/Lizárraga et al. - 2017 - First Principles Theory of the hcp-fcc Phase Transition in Cobalt.pdf \endverb \verb{urlraw} \verb https://www.nature.com/articles/s41598-017-03877-5 \endverb \verb{url} \verb https://www.nature.com/articles/s41598-017-03877-5 \endverb \keyw{Electronic properties and materials,Phase transitions and critical phenomena} \endentry \entry{frenkMicrostructuralEffectsSliding1994}{article}{}{} \name{author}{2}{}{% {{hash=6e61e4cc50de7f0f6f6fa42dce1a72c1}{% family={Frenk}, familyi={F\bibinitperiod}, given={A.}, giveni={A\bibinitperiod}}}% {{hash=38d34d9973e4cdc0ed305fca9bfc6034}{% family={Kurz}, familyi={K\bibinitperiod}, given={W.}, giveni={W\bibinitperiod}}}% } \strng{namehash}{1470295c00338871700e4ccaea4e2085} \strng{fullhash}{1470295c00338871700e4ccaea4e2085} \strng{fullhashraw}{1470295c00338871700e4ccaea4e2085} \strng{bibnamehash}{1470295c00338871700e4ccaea4e2085} \strng{authorbibnamehash}{1470295c00338871700e4ccaea4e2085} \strng{authornamehash}{1470295c00338871700e4ccaea4e2085} \strng{authorfullhash}{1470295c00338871700e4ccaea4e2085} \strng{authorfullhashraw}{1470295c00338871700e4ccaea4e2085} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The influence of the microstructure on the dry sliding wear resistance of a hypo-eutectic Stellite 6 alloy was investigated under conditions leading to severe metallic wear of the hardfacing alloy. Conventional chill casting as well as laser surface cladding were used to produce a wide range of solidification microstructures. The hardness of the alloy was strongly dependent on the microstructure and in particular on the size of the dendrites. Under the sliding conditions investigated, severe delamination wear of the Stellite occurred. High coefficients of friction were measured and the structure in the subsurface was completely destroyed by the resulting stress cycles. During the stationary wear regime, no dependence of the wear rate on the as-solidified microstructure could therefore be determined. However, a strong influence on the wear resistance of alloying elements which affect the matrix properties was observed. Suggestions are made for the improvement of the wear resistance of such alloys under similar sliding conditions.} \field{day}{1} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{5} \field{number}{1} \field{shortjournal}{Wear} \field{title}{Microstructural Effects on the Sliding Wear Resistance of a Cobalt-Based Alloy} \field{urlday}{18} \field{urlmonth}{2} \field{urlyear}{2025} \field{volume}{174} \field{year}{1994} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{81\bibrangedash 91} \range{pages}{11} \verb{doi} \verb 10.1016/0043-1648(94)90089-2 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/RNEKZZLX/Frenk and Kurz - 1994 - Microstructural effects on the sliding wear resistance of a cobalt-based alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/BRB89HRA/0043164894900892.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/0043164894900892 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/0043164894900892 \endverb \endentry \entry{woodfordCavitationerosionlnducedPhaseTransformations1972}{article}{}{} \name{author}{1}{}{% {{hash=ec350c0e4a923f946e920c9567b4e7ab}{% family={Woodford}, familyi={W\bibinitperiod}, given={D.\bibnamedelimi A.}, giveni={D\bibinitperiod\bibinitdelim A\bibinitperiod}}}% } \strng{namehash}{ec350c0e4a923f946e920c9567b4e7ab} \strng{fullhash}{ec350c0e4a923f946e920c9567b4e7ab} \strng{fullhashraw}{ec350c0e4a923f946e920c9567b4e7ab} \strng{bibnamehash}{ec350c0e4a923f946e920c9567b4e7ab} \strng{authorbibnamehash}{ec350c0e4a923f946e920c9567b4e7ab} \strng{authornamehash}{ec350c0e4a923f946e920c9567b4e7ab} \strng{authorfullhash}{ec350c0e4a923f946e920c9567b4e7ab} \strng{authorfullhashraw}{ec350c0e4a923f946e920c9567b4e7ab} \field{sortinit}{4} \field{sortinithash}{9381316451d1b9788675a07e972a12a7} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{issn}{0026-086X, 2379-0083} \field{journaltitle}{Metallurgical Transactions} \field{langid}{english} \field{month}{5} \field{number}{5} \field{shortjournal}{Metall Trans} \field{title}{Cavitation-Erosion-Lnduced Phase Transformations in Alloys} \field{urlday}{18} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{3} \field{year}{1972} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{1137\bibrangedash 1145} \range{pages}{9} \verb{doi} \verb 10.1007/BF02642445 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/83W2TB9R/Woodford - 1972 - Cavitation-erosion-lnduced phase transformations in alloys.pdf \endverb \verb{urlraw} \verb https://link.springer.com/10.1007/BF02642445 \endverb \verb{url} \verb https://link.springer.com/10.1007/BF02642445 \endverb \keyw{Corrosion,Erosion Resistance,Martensite,Materials Chemistry,Materials Engineering,Materials Science,Metallurgical Transaction,Metallurgical Transaction Volume,Metals and Alloys,Phase Transitions and Multiphase Systems,Stack Fault Energy} \endentry \entry{yuInfluenceManufacturingProcess2008}{article}{}{} \name{author}{4}{}{% {{hash=f46cff6a47143fdbd36ae8842919e073}{% family={Yu}, familyi={Y\bibinitperiod}, given={H.}, giveni={H\bibinitperiod}}}% {{hash=25252d98cf2cdf2878867f5c5a6110fb}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Rehan}, giveni={R\bibinitperiod}}}% {{hash=720a4573d41f2302c51d8dfc20eb7025}{% family={Lovelock}, familyi={L\bibinitperiod}, given={H.\bibnamedelimi de\bibnamedelima Villiers}, giveni={H\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim V\bibinitperiod}}}% {{hash=0e68382b25995f7a55c9b600def7c365}{% family={Davies}, familyi={D\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% } \strng{namehash}{56581c67a86bce08f334a1ace4c9fccb} \strng{fullhash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{fullhashraw}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{bibnamehash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{authorbibnamehash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb} \strng{authorfullhash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{authorfullhashraw}{1f78999103aa6fe8615e5bd6e7f7dddf} \field{extraname}{1} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Manufacturing process routes of materials can be adapted to manipulate their microstructure and hence their tribological performance. As industrial demands push the applications of tribological materials to harsher environments of higher stress, starved lubrication, and improved life performance, manufacturing processes can be tailored to optimize their use in particular engineering applications. The aim of this paper was therefore to comprehend the structure-property relationships of a wear resistant cobalt-based alloy (Stellite 6) produced from two different processing routes of powder consolidated hot isostatic pressing (HIPing) and casting. This alloy had a nominal wt\,\% composition of Co–28Cr–4.5W–1C, which is commonly used in wear related applications in harsh tribological environments. However, the coarse carbide structure of the cast alloy results in higher brittleness and lower toughness. Hence this research was conducted to comprehend if carbide refinement, caused by changing the processing route to HIPing, could improve the tribomechanical performance of this alloy. Microstructural and tribomechanical evaluations, which involved hardness, impact toughness, abrasive wear, sliding wear, and contact fatigue performance tests, indicated that despite the similar abrasive and sliding wear resistance of both alloys, the HIPed alloy exhibited an improved contact fatigue and impact toughness performance in comparison to the cast counterpart. This difference in behavior is discussed in terms of the structure-property relationships. Results of this research indicated that the HIPing process could provide additional impact and fatigue resistance to this alloy without compromising the hardness and the abrasive/sliding wear resistance, which makes the HIPed alloy suitable for relatively higher stress applications. Results are also compared with a previously reported investigation of the Stellite 20 alloy, which had a much higher carbide content in comparison to the Stellite 6 alloy, caused by the variation in the content of alloying elements. These results indicated that the fatigue resistance did not follow the expected trend of the improvement in impact toughness. In terms of the design process, the combination of hardness, toughness, and carbide content show a complex interdependency, where a 40\% reduction in the average hardness and 60\% reduction in carbide content had a more dominating effect on the contact fatigue resistance when compared with an order of magnitude improvement in the impact toughness of the HIPed Stellite 6 alloy.} \field{annotation}{46 citations (Semantic Scholar/DOI) [2025-05-01]} \field{day}{4} \field{issn}{0742-4787} \field{journaltitle}{Journal of Tribology} \field{month}{12} \field{number}{011601} \field{shortjournal}{Journal of Tribology} \field{title}{Influence of {{Manufacturing Process}} and {{Alloying Element Content}} on the {{Tribomechanical Properties}} of {{Cobalt-Based Alloys}}} \field{urlday}{1} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{131} \field{year}{2008} \field{dateera}{ce} \field{urldateera}{ce} \verb{doi} \verb 10.1115/1.2991122 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/S25JD3BR/Yu et al. - 2008 - Influence of Manufacturing Process and Alloying Element Content on the Tribomechanical Properties of.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/4ZMU78K6/Influence-of-Manufacturing-Process-and-Alloying.html \endverb \verb{urlraw} \verb https://doi.org/10.1115/1.2991122 \endverb \verb{url} \verb https://doi.org/10.1115/1.2991122 \endverb \endentry \entry{dingStudyCarbidePrecipitation2021}{article}{}{} \name{author}{6}{}{% {{hash=2eaf2f6ae9a17a6cd4c7c02fce21d700}{% family={Ding}, familyi={D\bibinitperiod}, given={Yinping}, giveni={Y\bibinitperiod}}}% {{hash=6e0407cf2820edaaaeebbc9f383e0490}{% family={Liu}, familyi={L\bibinitperiod}, given={Rong}, giveni={R\bibinitperiod}}}% {{hash=ab7a74f29f37e18b47b63020d768d7bc}{% family={Zhang}, familyi={Z\bibinitperiod}, given={Xiaozhou}, giveni={X\bibinitperiod}}}% {{hash=8ff4ab55a1012fa951c268323c7383a4}{% family={Yao}, familyi={Y\bibinitperiod}, given={Matthew}, giveni={M\bibinitperiod}}}% {{hash=0f905f138f4ab70d88e1aef93b0060ff}{% family={Yao}, familyi={Y\bibinitperiod}, given={Zhehe}, giveni={Z\bibinitperiod}}}% {{hash=2b00ca9ea5084e5849e3a5a7ed7bda50}{% family={Yao}, familyi={Y\bibinitperiod}, given={Jianhua}, giveni={J\bibinitperiod}}}% } \strng{namehash}{0d002b7be241610612472ae1588e166c} \strng{fullhash}{e07aef01fcb32ffe0c4b9e99b16cad2f} \strng{fullhashraw}{e07aef01fcb32ffe0c4b9e99b16cad2f} \strng{bibnamehash}{e07aef01fcb32ffe0c4b9e99b16cad2f} \strng{authorbibnamehash}{e07aef01fcb32ffe0c4b9e99b16cad2f} \strng{authornamehash}{0d002b7be241610612472ae1588e166c} \strng{authorfullhash}{e07aef01fcb32ffe0c4b9e99b16cad2f} \strng{authorfullhashraw}{e07aef01fcb32ffe0c4b9e99b16cad2f} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Wear-resistant cobalt-based alloys generally contain high chromium content so that the carbides in these alloys are mainly Cr-rich except the alloys which contain very high tungsten content. In this research an abnormal cobalt-based with very low chromium but very high tungsten content is created, in order to avoid Cr-rich carbide precipitation. The focus of the research is to investigate the effect of chromium and tungsten contents on the formation of carbides in cobalt-based alloys. Furthermore, the influence of heat treatment on the microstructure change of the new alloy is studied by aging the alloy at a temperature of 900 °C for 24 hours or at 980 °C for 350 hours. It is found that the heat treatments can cause dissolution of W-rich carbides and promote graphite separation from the carbides in the new alloy. The dry-sliding wear tests show that the presence of graphite improves the tribological properties of the new alloy due to reduction in friction. Aging time has influence on the dissolution of the carbides in the new alloy, thus affecting the amount of graphite precipitation during the heat treatment. Stellite 80, having the same carbon content but different chromium and tungsten contents with the new alloy, is studied in parallel for comparison.} \field{day}{1} \field{issn}{1544-1024} \field{journaltitle}{Journal of Materials Engineering and Performance} \field{langid}{english} \field{month}{8} \field{number}{8} \field{shortjournal}{J. of Materi Eng and Perform} \field{title}{Study of {{Carbide Precipitation}} in {{Two Cobalt-Based Alloys}} with {{Distinct Chromium}} and {{Tungsten Contents}}} \field{urlday}{12} \field{urlmonth}{6} \field{urlyear}{2025} \field{volume}{30} \field{year}{2021} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{5962\bibrangedash 5973} \range{pages}{12} \verb{doi} \verb 10.1007/s11665-021-05786-1 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/63237DJZ/Ding et al. - 2021 - Study of Carbide Precipitation in Two Cobalt-Based Alloys with Distinct Chromium and Tungsten Conten.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/s11665-021-05786-1 \endverb \verb{url} \verb https://doi.org/10.1007/s11665-021-05786-1 \endverb \keyw{carbide,Carbon Materials,chromium,Coatings,Cobalt-based alloy,Corrosion,heat treatment,Metals and Alloys,Steel Light Metal,Tribology,tungsten,wear} \endentry \entry{morrisStandardXrayDiffraction}{article}{}{} \name{author}{1}{}{% {{hash=8f2f79743a0a664f4865ae809851acd8}{% family={Morris}, familyi={M\bibinitperiod}, given={Marlene}, giveni={M\bibinitperiod}}}% } \strng{namehash}{8f2f79743a0a664f4865ae809851acd8} \strng{fullhash}{8f2f79743a0a664f4865ae809851acd8} \strng{fullhashraw}{8f2f79743a0a664f4865ae809851acd8} \strng{bibnamehash}{8f2f79743a0a664f4865ae809851acd8} \strng{authorbibnamehash}{8f2f79743a0a664f4865ae809851acd8} \strng{authornamehash}{8f2f79743a0a664f4865ae809851acd8} \strng{authorfullhash}{8f2f79743a0a664f4865ae809851acd8} \strng{authorfullhashraw}{8f2f79743a0a664f4865ae809851acd8} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{langid}{english} \field{title}{Standard X-Ray Diffraction Powder Patterns: Section 21- Data for 92 Substances} \verb{doi} \verb 10.6028/NBS.MONO.25-21 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/TEDTTJHX/Morris - Standard x-ray diffraction powder patterns section 21- data for 92 substances.pdf \endverb \endentry \entry{zhangThermodynamicInvestigationPhase2019}{article}{}{} \name{author}{6}{}{% {{hash=ec2bd483377a347faf7f2cd632912480}{% family={Zhang}, familyi={Z\bibinitperiod}, given={Cong}, giveni={C\bibinitperiod}}}% {{hash=c79f9d27684afcc693781f9fe388de31}{% family={Yin}, familyi={Y\bibinitperiod}, given={Haiqing}, giveni={H\bibinitperiod}}}% {{hash=7ef2e914ab9be6e51b4acec59f3cb58e}{% family={Lv}, familyi={L\bibinitperiod}, given={Jian}, giveni={J\bibinitperiod}}}% {{hash=384ae4e26306092cc1e56e64da6e92e3}{% family={Du}, familyi={D\bibinitperiod}, given={Yong}, giveni={Y\bibinitperiod}}}% {{hash=0a96ba48e74f3e7c7baaedb2d3f4cdc0}{% family={Tan}, familyi={T\bibinitperiod}, given={Zhuopeng}, giveni={Z\bibinitperiod}}}% {{hash=3b6f3f67793d5952f60f8d8596cb0170}{% family={Liu}, familyi={L\bibinitperiod}, given={Yiqiang}, giveni={Y\bibinitperiod}}}% } \strng{namehash}{0a7eb24fadf69e6ae061a36a3c2dba42} \strng{fullhash}{1d1ce7d3fa8bc1d35fdbb3e5bdc9fecf} \strng{fullhashraw}{1d1ce7d3fa8bc1d35fdbb3e5bdc9fecf} \strng{bibnamehash}{1d1ce7d3fa8bc1d35fdbb3e5bdc9fecf} \strng{authorbibnamehash}{1d1ce7d3fa8bc1d35fdbb3e5bdc9fecf} \strng{authornamehash}{0a7eb24fadf69e6ae061a36a3c2dba42} \strng{authorfullhash}{1d1ce7d3fa8bc1d35fdbb3e5bdc9fecf} \strng{authorfullhashraw}{1d1ce7d3fa8bc1d35fdbb3e5bdc9fecf} \field{extraname}{1} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The C-Co-Mo-W and C-Mo-Ni-W quaternary systems have been critically evaluated by means of the CALPHAD approach, in which the Co-Mo-W system was readjusted to ensure the model consistency. The thermodynamic models of Gibbs energies for individual phases in the ternary and quaternary systems are described, including substitutional solution model, sublattice model and linear compound model. The modeling covers the whole temperature and composition ranges, and a set of self-consistent thermodynamic parameters for the C-Co-Mo-W and C-Mo-Ni-W quaternary systems is obtained. According to the comprehensive comparisons between the reported and calculated phase diagram data, the reliable equilibria information is satisfactorily accounted for by the modeling. Based on the present work together with the previously reported assessments of binary, ternary and quaternary sub-systems, a thermodynamic database for the C-Co-Mo-Ni-W quinary system is constructed and applied to calculate the sintering region phase equilibria of the (W,Mo)C-(Co,Ni) cemented carbides.} \field{day}{1} \field{issn}{0364-5916} \field{journaltitle}{Calphad} \field{month}{12} \field{shortjournal}{Calphad} \field{title}{Thermodynamic Investigation of Phase Equilibria on the ({{W}},{{Mo}}){{C-}}({{Co}},{{Ni}}) Cemented Carbides} \field{urlday}{18} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{67} \field{year}{2019} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{101664} \range{pages}{1} \verb{doi} \verb 10.1016/j.calphad.2019.101664 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/J45PNU2T/Zhang et al. - 2019 - Thermodynamic investigation of phase equilibria on the (W,Mo)C-(Co,Ni) cemented carbides.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/QBANAT6W/S0364591619301051.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0364591619301051 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0364591619301051 \endverb \keyw{(WMo)C,CALPHAD,Cemented carbide,Database,Phase equilibria} \endentry \entry{zhangThermodynamicModelingCCoMo2016}{article}{}{} \name{author}{4}{}{% {{hash=ec2bd483377a347faf7f2cd632912480}{% family={Zhang}, familyi={Z\bibinitperiod}, given={Cong}, giveni={C\bibinitperiod}}}% {{hash=2ea1fc705685378d562c0bb66e6a5e9d}{% family={Peng}, familyi={P\bibinitperiod}, given={Yingbiao}, giveni={Y\bibinitperiod}}}% {{hash=a5a7e1da5f8e899211f04d84a59d0dd6}{% family={Zhou}, familyi={Z\bibinitperiod}, given={Peng}, giveni={P\bibinitperiod}}}% {{hash=384ae4e26306092cc1e56e64da6e92e3}{% family={Du}, familyi={D\bibinitperiod}, given={Yong}, giveni={Y\bibinitperiod}}}% } \strng{namehash}{0a7eb24fadf69e6ae061a36a3c2dba42} \strng{fullhash}{858cb95d99283d04e0cb9203155ef419} \strng{fullhashraw}{858cb95d99283d04e0cb9203155ef419} \strng{bibnamehash}{858cb95d99283d04e0cb9203155ef419} \strng{authorbibnamehash}{858cb95d99283d04e0cb9203155ef419} \strng{authornamehash}{0a7eb24fadf69e6ae061a36a3c2dba42} \strng{authorfullhash}{858cb95d99283d04e0cb9203155ef419} \strng{authorfullhashraw}{858cb95d99283d04e0cb9203155ef419} \field{extraname}{2} \field{sortinit}{6} \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The C-Co-Mo and C-Mo-Ni systems were assessed by means of the CALPHAD (CALculation of PHAse Diagram) approach. All of the experimental phase diagram and thermodynamic data available from the literature were critically reviewed. The liquid was modeled as substitutional solution phase, while the solid solution phases including (γCo), (Ni), (Mo), MoC and Mo2C were described by sublattice model. The M6C and M12C ternary carbides were considered as linear and stoichiometric compounds, respectively. The modeling of C-Co-Mo and C-Mo-Ni systems covers the whole composition and temperature ranges. A set of self-consistent thermodynamic parameters for the C-Co-Mo and C-Mo-Ni systems was finally obtained. Comprehensive comparisons between the calculated and measured phase diagram and thermodynamic data show that the experimental information is satisfactorily accounted for by the present thermodynamic description. The liquidus projection and reaction scheme of the C-Co-Mo and C-Mo-Ni systems were also generated by using the present thermodynamic parameters.} \field{day}{1} \field{issn}{1863-7345} \field{journaltitle}{Journal of Phase Equilibria and Diffusion} \field{langid}{english} \field{month}{8} \field{number}{4} \field{shortjournal}{J. Phase Equilib. Diffus.} \field{title}{Thermodynamic {{Modeling}} of the {{C-Co-Mo}} and {{C-Mo-Ni Ternary Systems}}} \field{urlday}{18} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{37} \field{year}{2016} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{423\bibrangedash 437} \range{pages}{15} \verb{doi} \verb 10.1007/s11669-016-0471-1 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/2WXICPDB/zhangThermodynamicModelingCCoMo2016_phaseDiagramPermission.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/TUZLR27P/Zhang et al. - 2016 - Thermodynamic Modeling of the C-Co-Mo and C-Mo-Ni Ternary Systems.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/s11669-016-0471-1 \endverb \verb{url} \verb https://doi.org/10.1007/s11669-016-0471-1 \endverb \keyw{C-Co-Mo,C-Mo-Ni,cermets,Coordination Chemistry,Metals and Alloys,Organometallic Chemistry,phase diagram,Phase Transition and Critical Phenomena,Phase Transitions and Multiphase Systems,Solid-State Chemistry,thermodynamic assessment} \endentry \entry{yuTriboMechanicalEvaluationsCobaltBased2007}{article}{}{} \name{author}{4}{}{% {{hash=f46cff6a47143fdbd36ae8842919e073}{% family={Yu}, familyi={Y\bibinitperiod}, given={H}, giveni={H\bibinitperiod}}}% {{hash=25252d98cf2cdf2878867f5c5a6110fb}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Rehan}, giveni={R\bibinitperiod}}}% {{hash=720a4573d41f2302c51d8dfc20eb7025}{% family={Lovelock}, familyi={L\bibinitperiod}, given={H\bibnamedelima de\bibnamedelima Villiers}, giveni={H\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim V\bibinitperiod}}}% {{hash=0e68382b25995f7a55c9b600def7c365}{% family={Davies}, familyi={D\bibinitperiod}, given={S}, giveni={S\bibinitperiod}}}% } \strng{namehash}{56581c67a86bce08f334a1ace4c9fccb} \strng{fullhash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{fullhashraw}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{bibnamehash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{authorbibnamehash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb} \strng{authorfullhash}{1f78999103aa6fe8615e5bd6e7f7dddf} \strng{authorfullhashraw}{1f78999103aa6fe8615e5bd6e7f7dddf} \field{extraname}{2} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Cobalt-based alloys are known for their excellent wear resistance, particularly under high temperature and corrosive environments. However the cast cobalt-based alloys have relatively high brittleness, and low toughness, due to their coarse carbide structure. This paper aims to comprehend if carbide refinement, caused by changing the processing route from sand casting to powder consolidated Hot Isostatic Pressing (HIPing), can improve the tribo-mechanical properties of cobalt-based alloys. The alloy selected for this investigation had a nominal wt.\% composition of Co-30Cr-14W-1C, which is similar to the composition of the commercially available Stellite®4 alloy. The Hot Isostatic Pressed (HIPed) alloy had a much finer microstructure than the cast alloy, which showed a typical hypoeutectic dendritic microstructure. Both alloys had similar hardness. Although the cast alloy showed slightly better abrasive and sliding wear resistance than the HIPed alloy due to their coarser eutectic carbides, the HIPed alloy had a significant advantage on the impact toughness and contact fatigue performance. The results of this comparative investigation indicated that the HIPed alloy had an attractive combination of tribo-mechanical properties, i.e. improved impact and fatigue resistance, whilst preserving the high hardness and good wear resistance associated with the cast alloy, making it suitable for relatively higher stress applications.} \field{langid}{english} \field{title}{Tribo-{{Mechanical Evaluations}} of {{Cobalt-Based}} ({{Stellite}} 4) {{Alloys Manufactured}} via {{HIPing}} and {{Casting}}} \field{year}{2007} \field{dateera}{ce} \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/IRK9LN48/Yu et al. - 2007 - Tribo-Mechanical Evaluations of Cobalt-Based (Stel.pdf \endverb \endentry \entry{zhaoFirstprinciplesStudyPreferential2023}{article}{}{} \name{author}{4}{}{% {{hash=1d68b6c43819221c5197fd0c4c6bde44}{% family={Zhao}, familyi={Z\bibinitperiod}, given={Manxiu}, giveni={M\bibinitperiod}}}% {{hash=9811fbeff5fc2355c991bc67051763ca}{% family={Huang}, familyi={H\bibinitperiod}, given={Haidong}, giveni={H\bibinitperiod}}}% {{hash=51e9ee07a2beaf5ba3568e2cc56a8865}{% family={Tang}, familyi={T\bibinitperiod}, given={Taotao}, giveni={T\bibinitperiod}}}% {{hash=c13ba7ccac16e66bc28bca7c9fe32b95}{% family={Li}, familyi={L\bibinitperiod}, given={Xiaobo}, giveni={X\bibinitperiod}}}% } \strng{namehash}{347e4b66d05e3d56d0755394e88ab9af} \strng{fullhash}{75f311ef913ccc279ce87795b071de8e} \strng{fullhashraw}{75f311ef913ccc279ce87795b071de8e} \strng{bibnamehash}{75f311ef913ccc279ce87795b071de8e} \strng{authorbibnamehash}{75f311ef913ccc279ce87795b071de8e} \strng{authornamehash}{347e4b66d05e3d56d0755394e88ab9af} \strng{authorfullhash}{75f311ef913ccc279ce87795b071de8e} \strng{authorfullhashraw}{75f311ef913ccc279ce87795b071de8e} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The preferential sites of Cr in the μ-Co7W6 phase and its influence on electronic properties were studied by first-principles calculations based on density functional theory. The calculation results of the formation energy and defect formation energy show that the stability of the system is enhanced when Cr occupies the Co site, which indicates that Cr tends to occupy the Co site of the system. By calculating the density of states, the Hamilton population of crystal orbital, the electron location function and the Bader charge distribution, the reason why Cr preferentially occupied the Co sites is further explained. This is primarily owing to the hybridization of the d-d orbitals of the Cr atom to its adjacent atoms.} \field{day}{1} \field{issn}{2053-1591} \field{journaltitle}{Materials Research Express} \field{langid}{english} \field{month}{3} \field{number}{3} \field{shortjournal}{Mater. Res. Express} \field{title}{First-Principles Study on the Preferential Sites of {{Cr}} in {{Co}}{\textsubscript{7}} {{W}}{\textsubscript{6}}} \field{urlday}{18} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{10} \field{year}{2023} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{036502} \range{pages}{1} \verb{doi} \verb 10.1088/2053-1591/aca5ef \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/A6CWR584/Zhao et al. - 2023 - First-principles study on the preferential sites of Cr in Co7 W6.pdf \endverb \verb{urlraw} \verb https://iopscience.iop.org/article/10.1088/2053-1591/aca5ef \endverb \verb{url} \verb https://iopscience.iop.org/article/10.1088/2053-1591/aca5ef \endverb \endentry \entry{kurlovPhaseEquilibriaWC2006}{article}{}{} \name{author}{2}{}{% {{hash=81b5de54503bbe1400cc43150bf88ee0}{% family={Kurlov}, familyi={K\bibinitperiod}, given={Aleksei\bibnamedelima S}, giveni={A\bibinitperiod\bibinitdelim S\bibinitperiod}}}% {{hash=80fdf27dcae1c9884610861bac26c035}{% family={Gusev}, familyi={G\bibinitperiod}, given={Aleksandr\bibnamedelima I}, giveni={A\bibinitperiod\bibinitdelim I\bibinitperiod}}}% } \strng{namehash}{ac412d155faedc2a016852b600a56787} \strng{fullhash}{ac412d155faedc2a016852b600a56787} \strng{fullhashraw}{ac412d155faedc2a016852b600a56787} \strng{bibnamehash}{ac412d155faedc2a016852b600a56787} \strng{authorbibnamehash}{ac412d155faedc2a016852b600a56787} \strng{authornamehash}{ac412d155faedc2a016852b600a56787} \strng{authorfullhash}{ac412d155faedc2a016852b600a56787} \strng{authorfullhashraw}{ac412d155faedc2a016852b600a56787} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{day}{31} \field{issn}{0036-021X, 1468-4837} \field{journaltitle}{Russian Chemical Reviews} \field{langid}{english} \field{month}{7} \field{number}{7} \field{shortjournal}{Russ. Chem. Rev.} \field{title}{Phase Equilibria in the {{W}}–{{C}} System and Tungsten Carbides} \field{urlday}{11} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{75} \field{year}{2006} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{617\bibrangedash 636} \range{pages}{20} \verb{doi} \verb 10.1070/RC2006v075n07ABEH003606 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/5FCNAAWX/Kurlov and Gusev - 2006 - Phase equilibria in the W–C system and tungsten carbides.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/74J2LREI/Kurlov and Gusev - 2006 - Phase equilibria in the W–C system and tungsten carbides.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/ZL88KH8R/Kurlov and Gusev - 2006 - Phase equilibria in the W–C system and tungsten carbides.pdf \endverb \verb{urlraw} \verb https://iopscience.iop.org/article/10.1070/RC2006v075n07ABEH003606 \endverb \verb{url} \verb https://iopscience.iop.org/article/10.1070/RC2006v075n07ABEH003606 \endverb \endentry \entry{tulhoffCarbides2000}{incollection}{}{} \name{author}{1}{}{% {{hash=60191d8606ddde73fd3a29618d10a14a}{% family={Tulhoff}, familyi={T\bibinitperiod}, given={Helmut}, giveni={H\bibinitperiod}}}% } \name{editor}{1}{}{% {{hash=3a4c43859c990cc03810d0835bc30106}{% family={{Wiley-VCH}}, familyi={W\bibinitperiod}}}% } \list{publisher}{1}{% {Wiley}% } \strng{namehash}{60191d8606ddde73fd3a29618d10a14a} \strng{fullhash}{60191d8606ddde73fd3a29618d10a14a} \strng{fullhashraw}{60191d8606ddde73fd3a29618d10a14a} \strng{bibnamehash}{60191d8606ddde73fd3a29618d10a14a} \strng{authorbibnamehash}{60191d8606ddde73fd3a29618d10a14a} \strng{authornamehash}{60191d8606ddde73fd3a29618d10a14a} \strng{authorfullhash}{60191d8606ddde73fd3a29618d10a14a} \strng{authorfullhashraw}{60191d8606ddde73fd3a29618d10a14a} \strng{editorbibnamehash}{3a4c43859c990cc03810d0835bc30106} \strng{editornamehash}{3a4c43859c990cc03810d0835bc30106} \strng{editorfullhash}{3a4c43859c990cc03810d0835bc30106} \strng{editorfullhashraw}{3a4c43859c990cc03810d0835bc30106} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Abstract The article contains sections titled: 1. Survey 1.1. Saltlike Carbides 1.2. Metal‐like Carbides 1.3. Diamond‐like Carbides 1.4. Carbides of Nonmetallic Elements 1.5. Crystal Structure 1.6. General Production Processes 1.7. Uses 2. Metal‐like Carbides of Industrial Importance 2.1. Tungsten Carbide 2.2. Titanium Carbide 2.3. Tantalum Carbide 2.4. Niobium Carbide 2.5. Zirconium Carbide 2.6. Hafnium Carbide 2.7. Vanadium Carbide 2.8. Chromium Carbide 2.9. Molybdenum Carbide 3. Mixed Carbides 3.1. Tungsten ‐ Titanium Carbide 3.2. Other Mixed Carbides 3.3. Carbonitrides 3.4. Mixed Carbonitrides 4. Carbides of the Iron Group and Manganese 5. Complex Carbides} \field{booktitle}{Ullmann's {{Encyclopedia}} of {{Industrial Chemistry}}} \field{day}{15} \field{edition}{1} \field{isbn}{978-3-527-30385-4 978-3-527-30673-2} \field{langid}{english} \field{month}{6} \field{title}{Carbides} \field{urlday}{11} \field{urlmonth}{5} \field{urlyear}{2025} \field{year}{2000} \field{dateera}{ce} \field{urldateera}{ce} \verb{doi} \verb 10.1002/14356007.a05_061 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/MF7S6S2S/Tulhoff - 2000 - Carbides.pdf \endverb \verb{urlraw} \verb https://onlinelibrary.wiley.com/doi/10.1002/14356007.a05_061 \endverb \verb{url} \verb https://onlinelibrary.wiley.com/doi/10.1002/14356007.a05_061 \endverb \endentry \entry{jiangSecondaryM6CPrecipitation1999}{article}{}{} \name{author}{4}{}{% {{hash=d9d58491faaa13ecce7cd5155a2b929f}{% family={Jiang}, familyi={J\bibinitperiod}, given={W.\bibnamedelimi H.}, giveni={W\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=291b68d2c2ebf48cf77a050ffd8f8444}{% family={Yao}, familyi={Y\bibinitperiod}, given={X.\bibnamedelimi D.}, giveni={X\bibinitperiod\bibinitdelim D\bibinitperiod}}}% {{hash=029387509757fb046df75be07bbd81e9}{% family={Guan}, familyi={G\bibinitperiod}, given={H.\bibnamedelimi R.}, giveni={H\bibinitperiod\bibinitdelim R\bibinitperiod}}}% {{hash=e5f9ab8233de71b108b877651a998b5e}{% family={Hu}, familyi={H\bibinitperiod}, given={Z.\bibnamedelimi Q.}, giveni={Z\bibinitperiod\bibinitdelim Q\bibinitperiod}}}% } \strng{namehash}{5e3a7c730ab396105ad65c76237874db} \strng{fullhash}{143e39b3cd7e5dc5f90c2e7ae689ab02} \strng{fullhashraw}{143e39b3cd7e5dc5f90c2e7ae689ab02} \strng{bibnamehash}{143e39b3cd7e5dc5f90c2e7ae689ab02} \strng{authorbibnamehash}{143e39b3cd7e5dc5f90c2e7ae689ab02} \strng{authornamehash}{5e3a7c730ab396105ad65c76237874db} \strng{authorfullhash}{143e39b3cd7e5dc5f90c2e7ae689ab02} \strng{authorfullhashraw}{143e39b3cd7e5dc5f90c2e7ae689ab02} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{day}{1} \field{issn}{1573-4811} \field{journaltitle}{Journal of Materials Science Letters} \field{langid}{english} \field{month}{2} \field{number}{4} \field{shortjournal}{Journal of Materials Science Letters} \field{title}{Secondary {{M6C Precipitation}} in a {{Cobalt}}–Base {{Superalloy}}} \field{urlday}{12} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{18} \field{year}{1999} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{303\bibrangedash 305} \range{pages}{3} \verb{doi} \verb 10.1023/A:1006627122234 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/N6YF5UBN/Jiang et al. - 1999 - Secondary M6C Precipitation in a Cobalt–base Superalloy.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1023/A:1006627122234 \endverb \verb{url} \verb https://doi.org/10.1023/A:1006627122234 \endverb \keyw{Base Superalloy,Cobalt,Polymer,Polymers,Precipitation} \endentry \entry{poshtahaniPlasmaNitridingEffect2023}{article}{}{} \name{author}{3}{}{% {{hash=175eb20ee47c9582a3f8ea3d22001e57}{% family={Poshtahani}, familyi={P\bibinitperiod}, given={Alireza\bibnamedelima Gholami}, giveni={A\bibinitperiod\bibinitdelim G\bibinitperiod}}}% {{hash=07c1b47820afc649bfba0713cab4de95}{% family={Roostaie}, familyi={R\bibinitperiod}, given={Saied}, giveni={S\bibinitperiod}}}% {{hash=e6c9b4124e29f27f84c4fb7e8c08bb78}{% family={Azadi}, familyi={A\bibinitperiod}, given={Mahboobeh}, giveni={M\bibinitperiod}}}% } \strng{namehash}{85ad835b68ab405e3fdd2f9cb4695cc5} \strng{fullhash}{3078c5da5204fb1015ab5b6277c1c584} \strng{fullhashraw}{3078c5da5204fb1015ab5b6277c1c584} \strng{bibnamehash}{3078c5da5204fb1015ab5b6277c1c584} \strng{authorbibnamehash}{3078c5da5204fb1015ab5b6277c1c584} \strng{authornamehash}{85ad835b68ab405e3fdd2f9cb4695cc5} \strng{authorfullhash}{3078c5da5204fb1015ab5b6277c1c584} \strng{authorfullhashraw}{3078c5da5204fb1015ab5b6277c1c584} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Cladded Stellites on steel substrates are utilized vastly in harsh environments. Since the plasma nitriding process can raise the tribological behavior of the material surface. Thus, the main purpose of this paper is to investigate tribological and corrosion characteristics of nitrided Stellite 6 and 12 that were cladded through a plasma-transferred arc (PTA) method on stainless steel 410. A Pin-on-disk tribometer, Tafel polarization, and electrochemical impedance spectroscopy were utilized to study the properties of various coatings. The X-ray diffraction patterns indicated that both cladded coatings mainly included solid solution phase (γ-Co) and chromium-rich carbide phases. However, after the plasma nitriding (PN) process, nitrided phases such as CrN, CoN, and W2N were found at the surface of coatings. The PN process caused a reduction in wear rates for both Stellite coatings by about 89–98\%. This reduction was due to the hardness increase and the friction coefficient decrease. However, this PN process increased the corrosion rate of Stellites in a 3.5\% wt NaCl solution. Such behavior was based on forming brittle and hard nitrided phases that promote surface cracks and open the path for ion corrosion penetration.} \field{issn}{26668459} \field{journaltitle}{Results in Surfaces and Interfaces} \field{langid}{english} \field{month}{5} \field{shortjournal}{Results in Surfaces and Interfaces} \field{title}{Plasma Nitriding Effect on Tribological and Corrosion Properties of {{Stellite}} 6 and 12 {{PTA}} Weld Clad Hardfaced on Stainless Steel 410} \field{urlday}{8} \field{urlmonth}{6} \field{urlyear}{2025} \field{volume}{11} \field{year}{2023} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{100108} \range{pages}{1} \verb{doi} \verb 10.1016/j.rsurfi.2023.100108 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/LTCUQL8C/Poshtahani et al. - 2023 - Plasma nitriding effect on tribological and corrosion properties of Stellite 6 and 12 PTA weld clad.pdf \endverb \verb{urlraw} \verb https://linkinghub.elsevier.com/retrieve/pii/S2666845923000132 \endverb \verb{url} \verb https://linkinghub.elsevier.com/retrieve/pii/S2666845923000132 \endverb \endentry \entry{liElectronicMechanicalProperties2011}{article}{}{} \name{author}{7}{}{% {{hash=38d2662692399a03cc9f85a7b29ea26b}{% family={Li}, familyi={L\bibinitperiod}, given={Yefei}, giveni={Y\bibinitperiod}}}% {{hash=f5438a22e46ab6a9d2eb3e56b70a04d1}{% family={Gao}, familyi={G\bibinitperiod}, given={Yimin}, giveni={Y\bibinitperiod}}}% {{hash=0c09e5b15105e26cdeb5b2b8b33985a9}{% family={Xiao}, familyi={X\bibinitperiod}, given={Bing}, giveni={B\bibinitperiod}}}% {{hash=4647a2cbd1230cbb9142376faf81beb1}{% family={Min}, familyi={M\bibinitperiod}, given={Ting}, giveni={T\bibinitperiod}}}% {{hash=f79f5a7b59b9d811de4c82b462d68206}{% family={Yang}, familyi={Y\bibinitperiod}, given={Ying}, giveni={Y\bibinitperiod}}}% {{hash=5aac9d61bcec7fdd0aa84e3dcbe221cc}{% family={Ma}, familyi={M\bibinitperiod}, given={Shengqiang}, giveni={S\bibinitperiod}}}% {{hash=599771b3a9999fda90b30ed8bb9481ee}{% family={Yi}, familyi={Y\bibinitperiod}, given={Dawei}, giveni={D\bibinitperiod}}}% } \strng{namehash}{c35608b87362fe2266a4f838073b22a7} \strng{fullhash}{04e5a0626d47deb22a2e22dfd574573c} \strng{fullhashraw}{04e5a0626d47deb22a2e22dfd574573c} \strng{bibnamehash}{04e5a0626d47deb22a2e22dfd574573c} \strng{authorbibnamehash}{04e5a0626d47deb22a2e22dfd574573c} \strng{authornamehash}{c35608b87362fe2266a4f838073b22a7} \strng{authorfullhash}{04e5a0626d47deb22a2e22dfd574573c} \strng{authorfullhashraw}{04e5a0626d47deb22a2e22dfd574573c} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In the present study, the ground state properties of chromium carbides (h-CrC, c-CrC, Cr3C, Cr3C2, Cr7C3, and Cr23C6) are calculated by means of the first-principles pseudopotential method using the CASTEP code. The equilibrium crystal structures and thermodynamical stability of the six chromium carbide phases are discussed. Moreover, the chemical bonding in these carbides are interpreted by calculating the density of states, electron density distribution and Mulliken analysis; all the six chromium carbides have a combination of metallic, ionic and covalent bonding characteristic, while Cr7C3 exhibits the strongest metallic character. The elastic constants, elastic anisotropies and theoretical hardness of the carbides are also presented, which are important parameters for the structural materials and surface coatings.} \field{annotation}{240 citations (Semantic Scholar/DOI) [2025-04-12]} \field{day}{28} \field{issn}{0925-8388} \field{journaltitle}{Journal of Alloys and Compounds} \field{month}{4} \field{number}{17} \field{shortjournal}{Journal of Alloys and Compounds} \field{title}{The Electronic, Mechanical Properties and Theoretical Hardness of Chromium Carbides by First-Principles Calculations} \field{urlday}{14} \field{urlmonth}{7} \field{urlyear}{2024} \field{volume}{509} \field{year}{2011} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{5242\bibrangedash 5249} \range{pages}{8} \verb{doi} \verb 10.1016/j.jallcom.2011.02.009 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/NV9GXIIU/S0925838811003197.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0925838811003197 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0925838811003197 \endverb \keyw{Electronic structure,First-principles calculations,Inorganic compounds,Mechanical properties,Stability} \endentry \entry{medvedevaStabilityBinaryTernary2015}{article}{}{} \name{author}{3}{}{% {{hash=c9329ef20d1be25eef22bee54d4c1cec}{% family={Medvedeva}, familyi={M\bibinitperiod}, given={N.\bibnamedelimi I.}, giveni={N\bibinitperiod\bibinitdelim I\bibinitperiod}}}% {{hash=cc03f371439dd41fcc29e1c8082f126a}{% family={Van\bibnamedelima Aken}, familyi={V\bibinitperiod\bibinitdelim A\bibinitperiod}, given={D.\bibnamedelimi C.}, giveni={D\bibinitperiod\bibinitdelim C\bibinitperiod}}}% {{hash=786a0e5ce0bd551a8eb273af84ea4fab}{% family={Medvedeva}, familyi={M\bibinitperiod}, given={J.\bibnamedelimi E.}, giveni={J\bibinitperiod\bibinitdelim E\bibinitperiod}}}% } \strng{namehash}{83bc990685a5f0d389a58e497747894e} \strng{fullhash}{8eb63a92d8a451c4ace872095214954a} \strng{fullhashraw}{8eb63a92d8a451c4ace872095214954a} \strng{bibnamehash}{8eb63a92d8a451c4ace872095214954a} \strng{authorbibnamehash}{8eb63a92d8a451c4ace872095214954a} \strng{authornamehash}{83bc990685a5f0d389a58e497747894e} \strng{authorfullhash}{8eb63a92d8a451c4ace872095214954a} \strng{authorfullhashraw}{8eb63a92d8a451c4ace872095214954a} \field{sortinit}{7} \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{First-principles calculations were performed to study the phase stability of M23C6, (M=V, Cr, Mn, Fe, Co, Ni) and the solubility of d-impurities (Fe, Co, Ni, W) in Cr23C6, which is the most prevalent carbide in chromium steels. Our results correctly predict the relative stability of binary carbides, among which the most stable compounds are V23C6, Cr23C6 and Mn23C6. Stability of the M23C6 and MC carbides was related to the Md-filling, where the M–M and M–C bonds provide the cohesive properties, respectively. We demonstrated that iron and nickel should always be present in Cr23C6, where their concentrations may reach 50at.\% and 30at.\%, respectively. To predict the ways to control the carbide stabilization and distribution in iron matrix, both of which govern the microstructure and mechanical properties of high-alloy steels, we also investigated the effect of tungsten addition on the stability of quaternary carbides, namely (Cr, W, M)23C6 (M=Fe, Co, Ni). We found that tungsten strongly enhances the solubility of iron and nickel in chromium carbide, but it does not affect the cobalt solubility. A similar stabilizing effect was predicted for molybdenum, and it can be suggested that both tungsten and molybdenum should accelerate the formation of M23C6 and influence the kinetics of carbide precipitation.} \field{annotation}{55 citations (Semantic Scholar/DOI) [2025-04-12]} \field{day}{1} \field{issn}{0927-0256} \field{journaltitle}{Computational Materials Science} \field{month}{1} \field{shortjournal}{Computational Materials Science} \field{title}{Stability of Binary and Ternary {{M23C6}} Carbides from First Principles} \field{urlday}{14} \field{urlmonth}{7} \field{urlyear}{2024} \field{volume}{96} \field{year}{2015} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{159\bibrangedash 164} \range{pages}{6} \verb{doi} \verb 10.1016/j.commatsci.2014.09.016 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/9TB3J4W3/S0927025614006272.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0927025614006272 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0927025614006272 \endverb \keyw{calculations,Electronic and magnetic properties,Stability,Transition metal carbides MC} \endentry \entry{godecCoarseningBehaviourM23C62016}{article}{}{} \name{author}{2}{}{% {{hash=26199b37e0b7d9e004c61a521ec63741}{% family={Godec}, familyi={G\bibinitperiod}, given={M.}, giveni={M\bibinitperiod}}}% {{hash=c7de856fc73192c9d0d4e1f1ba2b827c}{% family={Skobir\bibnamedelima Balantič}, familyi={S\bibinitperiod\bibinitdelim B\bibinitperiod}, given={D.\bibnamedelimi A.}, giveni={D\bibinitperiod\bibinitdelim A\bibinitperiod}}}% } \list{publisher}{1}{% {Nature Publishing Group}% } \strng{namehash}{52e5a04407d2e2e59ccd050da2095806} \strng{fullhash}{52e5a04407d2e2e59ccd050da2095806} \strng{fullhashraw}{52e5a04407d2e2e59ccd050da2095806} \strng{bibnamehash}{52e5a04407d2e2e59ccd050da2095806} \strng{authorbibnamehash}{52e5a04407d2e2e59ccd050da2095806} \strng{authornamehash}{52e5a04407d2e2e59ccd050da2095806} \strng{authorfullhash}{52e5a04407d2e2e59ccd050da2095806} \strng{authorfullhashraw}{52e5a04407d2e2e59ccd050da2095806} \field{sortinit}{8} \field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix.} \field{annotation}{62 citations (Semantic Scholar/DOI) [2025-04-12]} \field{day}{13} \field{issn}{2045-2322} \field{journaltitle}{Scientific Reports} \field{langid}{english} \field{month}{7} \field{number}{1} \field{shortjournal}{Sci Rep} \field{title}{Coarsening Behaviour of {{M23C6}} Carbides in Creep-Resistant Steel Exposed to High Temperatures} \field{urlday}{14} \field{urlmonth}{7} \field{urlyear}{2024} \field{volume}{6} \field{year}{2016} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{29734} \range{pages}{1} \verb{doi} \verb 10.1038/srep29734 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/L8KBL4BI/Godec and Skobir Balantič - 2016 - Coarsening behaviour of M23C6 carbides in creep-re.pdf \endverb \verb{urlraw} \verb https://www.nature.com/articles/srep29734 \endverb \verb{url} \verb https://www.nature.com/articles/srep29734 \endverb \keyw{Mechanical properties,Metals and alloys} \endentry \entry{mohammadnezhadInsightMicrostructureCharacterization}{article}{}{} \name{author}{5}{}{% {{hash=ce17a687d3cf71567f6451754819e860}{% family={Mohammadnezhad}, familyi={M\bibinitperiod}, given={Mahyar}, giveni={M\bibinitperiod}}}% {{hash=2150654f7a1bde258523fe8d92bcf33a}{% family={Javaheri}, familyi={J\bibinitperiod}, given={Vahid}, giveni={V\bibinitperiod}}}% {{hash=1e57873f843da5ff4b079bee17da8f7e}{% family={Shamanian}, familyi={S\bibinitperiod}, given={Morteza}, giveni={M\bibinitperiod}}}% {{hash=0fbdf41677d07dc6c7dd4b03ea1330ff}{% family={Rizaneh}, familyi={R\bibinitperiod}, given={Shahram}, giveni={S\bibinitperiod}}}% {{hash=eb8332718f25e6ba7bbd52efbaeef40c}{% family={Szpunar}, familyi={S\bibinitperiod}, given={Jerzy\bibnamedelima A}, giveni={J\bibinitperiod\bibinitdelim A\bibinitperiod}}}% } \strng{namehash}{5993e914921b7c26e8a60d547e9d3c29} \strng{fullhash}{7d81598803b321669a3a68dbed902fff} \strng{fullhashraw}{7d81598803b321669a3a68dbed902fff} \strng{bibnamehash}{7d81598803b321669a3a68dbed902fff} \strng{authorbibnamehash}{7d81598803b321669a3a68dbed902fff} \strng{authornamehash}{5993e914921b7c26e8a60d547e9d3c29} \strng{authorfullhash}{7d81598803b321669a3a68dbed902fff} \strng{authorfullhashraw}{7d81598803b321669a3a68dbed902fff} \field{sortinit}{8} \field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Heat-resistant steels of HP series (Fe-25Cr-35Ni) are used in high temperature structural applications. Their composition include Nb as strong carbide former. Electron Backscatter Diffraction (EBSD) investigations revealed that, in the as-cast condition, alloys exhibit austenitic matrix with intergranular primary carbides such as MC, M23C6 and/or M7C3. During exposure at a high temperature, phase transformations occurred: chromium carbides of M7C3 type transform into the more stable M23C6 type, intergranular M23C6 carbides precipitate, and Lave phase due to increase of Niobium activity with temperature increase, as thermodynamic simulation confirmed. Therefore, combination of EBSD-EDS technique with thermodynamic calculation is one of the novel and most accurate method to investigation of phase transformation, as the precipitations are identified on the basis of their crystal structure, chemical composition and their thermodynamic features.} \field{langid}{english} \field{title}{Insight to the {{Microstructure Characterization}} of a {{HP Austenitic Heat Resistant Steel}} after {{Long-term Service Exposure}}} \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/YVVLS5HZ/Mohammadnezhad et al. - Insight to the Microstructure Characterization of a HP Austenitic Heat Resistant Steel after Long-te.pdf \endverb \keyw{Austenitic heat resistant steels,chromium carbide,EBSD,Laves phase,thermodynamic simulation} \endentry \entry{wong-kianComparisonErosioncorrosionBehaviour}{article}{}{} \name{author}{3}{}{% {{hash=55189d50e69da8f6d1818361f7b24cf0}{% family={Wong-Kian}, familyi={W\bibinithyphendelim K\bibinitperiod}, given={M}, giveni={M\bibinitperiod}}}% {{hash=2006c36c5f81f15e2a4bb75d5b5df12b}{% family={Cornisht}, familyi={C\bibinitperiod}, given={L\bibnamedelima A}, giveni={L\bibinitperiod\bibinitdelim A\bibinitperiod}}}% {{useprefix=true,hash=4f3d33a5cd25827eb3f0ba6d9c45d70b}{% family={Bennekomt}, familyi={B\bibinitperiod}, given={A}, giveni={A\bibinitperiod}, prefix={van}, prefixi={v\bibinitperiod}}}% } \strng{namehash}{89786b6e2410747d9aa43236b5018cfa} \strng{fullhash}{c59549c804f4461bb9d01fd5f17cc7da} \strng{fullhashraw}{c59549c804f4461bb9d01fd5f17cc7da} \strng{bibnamehash}{c59549c804f4461bb9d01fd5f17cc7da} \strng{authorbibnamehash}{c59549c804f4461bb9d01fd5f17cc7da} \strng{authornamehash}{89786b6e2410747d9aa43236b5018cfa} \strng{authorfullhash}{c59549c804f4461bb9d01fd5f17cc7da} \strng{authorfullhashraw}{c59549c804f4461bb9d01fd5f17cc7da} \field{sortinit}{8} \field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{langid}{english} \field{title}{Comparison of Erosion-Corrosion Behaviour of Hot Isostatically Pressed and Welded Stellite Coatings} \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/TGPX4IL4/Wong-Kian et al. - Comparison of erosion-corrosion behaviour of hot isostatically pressed and welded stellite coatings.pdf \endverb \keyw{carbon contents,chromium contents,erosion-corrosion behaviour,erosion-corrosion tests,hot isostatic pressing (HIP),metallographic studies,stellite coatings,stellite materials,tungsten contents,tungsten inert-gas welding} \endentry \entry{houdkovaEffectHeatTreatment2016}{article}{}{} \name{author}{3}{}{% {{hash=31762ba844a6f927048cfe7931b05d7c}{% family={Houdková}, familyi={H\bibinitperiod}, given={Šárka}, giveni={Š\bibinitperiod}}}% {{hash=c679835660d14da1c781f7241f5de2aa}{% family={Smazalová}, familyi={S\bibinitperiod}, given={Eva}, giveni={E\bibinitperiod}}}% {{hash=24ea54b558336acfb104f8282e547a9b}{% family={Pala}, familyi={P\bibinitperiod}, given={Zdeněk}, giveni={Z\bibinitperiod}}}% } \strng{namehash}{b653858d5069e40c9293508c7e503b3f} \strng{fullhash}{f696c2a107d5facde51dce5bfce39bdb} \strng{fullhashraw}{f696c2a107d5facde51dce5bfce39bdb} \strng{bibnamehash}{f696c2a107d5facde51dce5bfce39bdb} \strng{authorbibnamehash}{f696c2a107d5facde51dce5bfce39bdb} \strng{authornamehash}{b653858d5069e40c9293508c7e503b3f} \strng{authorfullhash}{f696c2a107d5facde51dce5bfce39bdb} \strng{authorfullhashraw}{f696c2a107d5facde51dce5bfce39bdb} \field{sortinit}{8} \field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Co-Cr-W HVOF-sprayed protective coatings are used for their high oxidation and wear resistance. Apart from the oxidation resistance, the stability of their mechanical properties in relation to thermal loading is crucial with respect to the most common high-temperature application areas. This work is focused mainly on evaluation of the heat-induced changes in the phase composition and related mechanical properties. It was shown that the original powder, composed fully from face-centered cubic Co-based alloy, partly changes its phase composition during spraying to a hexagonal close-packed (hcp) structure. The annealing further increases the ratio of the hcp phase in the structure. The heat-induced phase changes are accompanied by an increase in the coatings’ hardness and cohesion strength. The abrasive and adhesive wear behavior was evaluated. While the coatings’ heat treatment had a positive effect on the coefficient of friction, the abrasive and adhesive wear resistance of annealed coating was lower compared to as-sprayed coating.} \field{day}{1} \field{issn}{1544-1016} \field{journaltitle}{Journal of Thermal Spray Technology} \field{langid}{english} \field{month}{2} \field{number}{3} \field{shortjournal}{J Therm Spray Tech} \field{title}{Effect of {{Heat Treatment}} on the {{Microstructure}} and {{Properties}} of {{HVOF-Sprayed Co-Cr-W Coating}}} \field{urlday}{8} \field{urlmonth}{6} \field{urlyear}{2025} \field{volume}{25} \field{year}{2016} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{546\bibrangedash 557} \range{pages}{12} \verb{doi} \verb 10.1007/s11666-015-0365-5 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/T9CMVHQB/Houdková et al. - 2016 - Effect of Heat Treatment on the Microstructure and Properties of HVOF-Sprayed Co-Cr-W Coating.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/s11666-015-0365-5 \endverb \verb{url} \verb https://doi.org/10.1007/s11666-015-0365-5 \endverb \keyw{ASTM G-133,ASTM G-65,Co-Cr-W,Coating,Coatings,heat treatment,HVOF,Materials Chemistry,Materials Engineering,Materials Science,Metals and Alloys,Stellite 6,wear} \endentry \entry{ahmedInfluenceReHIPingStructure2013}{article}{}{} \name{author}{4}{}{% {{hash=25252d98cf2cdf2878867f5c5a6110fb}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Rehan}, giveni={R\bibinitperiod}}}% {{useprefix=true,hash=75bf7913ab7463c6e3734bec975046fc}{% family={Villiers\bibnamedelima Lovelock}, familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, given={H.\bibnamedelimi L.}, giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, prefix={de}, prefixi={d\bibinitperiod}}}% {{hash=0e68382b25995f7a55c9b600def7c365}{% family={Davies}, familyi={D\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% {{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{% family={Faisal}, familyi={F\bibinitperiod}, given={N.\bibnamedelimi H.}, giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}% } \strng{namehash}{9cc1d49cc1572c67ddbd4624ee55ebb2} \strng{fullhash}{d615ae2635e7a6b476f6c5949ab2efb4} \strng{fullhashraw}{d615ae2635e7a6b476f6c5949ab2efb4} \strng{bibnamehash}{d615ae2635e7a6b476f6c5949ab2efb4} \strng{authorbibnamehash}{d615ae2635e7a6b476f6c5949ab2efb4} \strng{authornamehash}{9cc1d49cc1572c67ddbd4624ee55ebb2} \strng{authorfullhash}{d615ae2635e7a6b476f6c5949ab2efb4} \strng{authorfullhashraw}{d615ae2635e7a6b476f6c5949ab2efb4} \field{extraname}{3} \field{sortinit}{8} \field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{HIP-consolidation (Hot Isostatic Pressing or HIPing) of cobalt-based Stellite alloys offers significant technological advantages for components operating in aggressive wear environments. The aim of this investigation was to ascertain the effect of re-HIPing on the HIPed alloy properties for Stellite 4, 6 and 20 alloys. Structure–property relationships are discussed on the basis of microstructural and tribo-mechanical evaluations. Re-HIPing results in coarsening of carbides and solid solution strengthening of the matrix. The average indentation modulus improved, as did the average hardness at micro- and nano-scales. Re-HIPing showed improvement in wear properties the extent of which was dependent on alloy composition.} \field{day}{1} \field{issn}{0301-679X} \field{journaltitle}{Tribology International} \field{month}{1} \field{shortjournal}{Tribology International} \field{title}{Influence of {{Re-HIPing}} on the Structure–Property Relationships of Cobalt-Based Alloys} \field{urlday}{30} \field{urlmonth}{6} \field{urlyear}{2024} \field{volume}{57} \field{year}{2013} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{8\bibrangedash 21} \range{pages}{14} \verb{doi} \verb 10.1016/j.triboint.2012.06.025 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/YD3U2PLT/Ahmed et al. - 2013 - Influence of Re-HIPing on the structure–property r.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/6RBIWYTK/S0301679X12002241.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 \endverb \keyw{Abrasive wear,Cobalt based alloys,HIPing and Re-HIPing,Stellite 20,Stellite 4,Stellite 6} \endentry \entry{yuComparisonTriboMechanicalProperties2007}{article}{}{} \name{author}{3}{}{% {{hash=f46cff6a47143fdbd36ae8842919e073}{% family={Yu}, familyi={Y\bibinitperiod}, given={H.}, giveni={H\bibinitperiod}}}% {{hash=25252d98cf2cdf2878867f5c5a6110fb}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Rehan}, giveni={R\bibinitperiod}}}% {{useprefix=true,hash=39fbce992265c4dd42ff7cb6ab804ded}{% family={Villiers\bibnamedelima Lovelock}, familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, given={H.}, giveni={H\bibinitperiod}, prefix={de}, prefixi={d\bibinitperiod}}}% } \strng{namehash}{56581c67a86bce08f334a1ace4c9fccb} \strng{fullhash}{ffbba216c74e30b20f0afadfe34b34bd} \strng{fullhashraw}{ffbba216c74e30b20f0afadfe34b34bd} \strng{bibnamehash}{ffbba216c74e30b20f0afadfe34b34bd} \strng{authorbibnamehash}{ffbba216c74e30b20f0afadfe34b34bd} \strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb} \strng{authorfullhash}{ffbba216c74e30b20f0afadfe34b34bd} \strng{authorfullhashraw}{ffbba216c74e30b20f0afadfe34b34bd} \field{extraname}{3} \field{sortinit}{9} \field{sortinithash}{0a5ebc79d83c96b6579069544c73c7d4} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt\,\% composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.} \field{day}{9} \field{issn}{0742-4787} \field{journaltitle}{Journal of Tribology} \field{month}{1} \field{number}{3} \field{shortjournal}{Journal of Tribology} \field{title}{A {{Comparison}} of the {{Tribo-Mechanical Properties}} of a {{Wear Resistant Cobalt-Based Alloy Produced}} by {{Different Manufacturing Processes}}} \field{urlday}{17} \field{urlmonth}{11} \field{urlyear}{2024} \field{volume}{129} \field{year}{2007} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{586\bibrangedash 594} \range{pages}{9} \verb{doi} \verb 10.1115/1.2736450 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/EQ4ZS7HE/Yu et al. - 2007 - A Comparison of the Tribo-Mechanical Properties of a Wear Resistant Cobalt-Based Alloy Produced by D.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/QYU29N9Z/A-Comparison-of-the-Tribo-Mechanical-Properties-of.html \endverb \verb{urlraw} \verb https://doi.org/10.1115/1.2736450 \endverb \verb{url} \verb https://doi.org/10.1115/1.2736450 \endverb \endentry \entry{malayogluCharacterisationPassiveFilm2005}{article}{}{} \name{author}{3}{}{% {{hash=71f57eb10950396ed3fa62c703ddaee5}{% family={Malayoglu}, familyi={M\bibinitperiod}, given={U.}, giveni={U\bibinitperiod}}}% {{hash=c00a172220606f67c3da2492047a9b71}{% family={Neville}, familyi={N\bibinitperiod}, given={A.}, giveni={A\bibinitperiod}}}% {{hash=55648bee6278c133a3a9432e019bac1f}{% family={Beamson}, familyi={B\bibinitperiod}, given={G.}, giveni={G\bibinitperiod}}}% } \strng{namehash}{e97dbd10bf73605a8abe6ce76eebeee7} \strng{fullhash}{7ff40951c25bbccfa0be99fabe55e73d} \strng{fullhashraw}{7ff40951c25bbccfa0be99fabe55e73d} \strng{bibnamehash}{7ff40951c25bbccfa0be99fabe55e73d} \strng{authorbibnamehash}{7ff40951c25bbccfa0be99fabe55e73d} \strng{authornamehash}{e97dbd10bf73605a8abe6ce76eebeee7} \strng{authorfullhash}{7ff40951c25bbccfa0be99fabe55e73d} \strng{authorfullhashraw}{7ff40951c25bbccfa0be99fabe55e73d} \field{sortinit}{9} \field{sortinithash}{0a5ebc79d83c96b6579069544c73c7d4} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In this paper results from the X-ray photoelectron spectroscopy (XPS) analysis of hot isostatically pressed (HIP) Stellite 6 in a 3.5\% NaCl liquid medium are reported. The aim of the paper is to determine the composition of the passive film formed at different temperatures and link it to the corrosion properties. It has been shown that the alloy passivates spontaneously in air resulting in the formation of a thin oxide film comprising Cr and Co. Electrochemical oxidation at different temperatures results in the formation of a complex layer, the composition and thickness of which depends on the test temperature. Co was detected in the solution after corrosion; the Co amount increases as the test temperature increases and no Co is found in the passive film after corrosion.} \field{annotation}{11 citations (Semantic Scholar/DOI) [2025-04-12]} \field{day}{25} \field{issn}{0921-5093} \field{journaltitle}{Materials Science and Engineering: A} \field{month}{2} \field{number}{1} \field{shortjournal}{Materials Science and Engineering: A} \field{title}{Characterisation of the Passive Film on {{HIPed Stellite}} 6 Alloy Using {{X-ray}} Photoelectron Spectroscopy} \field{urlday}{30} \field{urlmonth}{6} \field{urlyear}{2024} \field{volume}{393} \field{year}{2005} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{91\bibrangedash 101} \range{pages}{11} \verb{doi} \verb 10.1016/j.msea.2004.09.071 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/52P98YJ6/Malayoglu et al. - 2005 - Characterisation of the passive film on HIPed Stel.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/NKXS6GNR/display.html;/home/grokkingstuff/Sync/Zotero/Zotero/storage/VY6KCX3Y/S0921509304012511.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0921509304012511 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0921509304012511 \endverb \keyw{Anodic polarisation,Corrosion,Passivity,Stellite 6,X-ray photoelectron spectroscopy} \endentry \entry{antonyWearResistantCobaltBaseAlloys1983}{article}{}{} \name{author}{1}{}{% {{hash=17e055c732c247aed51d17d45a9665ce}{% family={Antony}, familyi={A\bibinitperiod}, given={Kenneth\bibnamedelima C.}, giveni={K\bibinitperiod\bibinitdelim C\bibinitperiod}}}% } \strng{namehash}{17e055c732c247aed51d17d45a9665ce} \strng{fullhash}{17e055c732c247aed51d17d45a9665ce} \strng{fullhashraw}{17e055c732c247aed51d17d45a9665ce} \strng{bibnamehash}{17e055c732c247aed51d17d45a9665ce} \strng{authorbibnamehash}{17e055c732c247aed51d17d45a9665ce} \strng{authornamehash}{17e055c732c247aed51d17d45a9665ce} \strng{authorfullhash}{17e055c732c247aed51d17d45a9665ce} \strng{authorfullhashraw}{17e055c732c247aed51d17d45a9665ce} \field{sortinit}{9} \field{sortinithash}{0a5ebc79d83c96b6579069544c73c7d4} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Cobalt-base alloys have enjoyed extensive use in wear-related engineering applications for well over 50 years because of their inherent high-strength, corrosion resistance, and ability to retain hardness at elevated temperatures. Microstructurally, wear-resistant cobalt-base alloys consist of hard particles (Cr7C3) dispersed in cobalt-rich (Co {$>$} 50\%) solid solution matrix alloys (generally Co-Cr-W/Mo). Recent investigations in the Cabot Corporation Technology Laboratories have shown that the adhesive and cavitation-erosion wear characteristics of these alloys are determined by the composition of the matrix alloy and are influenced to a large extent by a strain-induce fee → hep allotropie transformation in the matrix alloy. Further, it has been shown that the cobalt content in the matrix alloy can be decreased to approximately 30\% without significantly degrading relevant wear or corrosion properties. Toughness and abrasive wear resistance, on the other hand, are determined primarily by carbide volume fraction and morphology. Large, hypereutectic carbides are generally preferred for good abrasive wear resistance but are detrimental to toughness considerations. The tribological measurements and microstructural correlations associated with these Cabot investigations are summarized and discussed in this paper.} \field{day}{1} \field{issn}{1543-1851} \field{issue}{2} \field{journaltitle}{JOM} \field{langid}{english} \field{month}{2} \field{number}{2} \field{shortjournal}{JOM} \field{title}{Wear-{{Resistant Cobalt-Base Alloys}}} \field{urlday}{13} \field{urlmonth}{7} \field{urlyear}{2024} \field{volume}{35} \field{year}{1983} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{52\bibrangedash 60} \range{pages}{9} \verb{doi} \verb 10.1007/BF03338205 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/YVGTXSEF/Antony - 1983 - Wear-Resistant Cobalt-Base Alloys.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/BF03338205 \endverb \verb{url} \verb https://doi.org/10.1007/BF03338205 \endverb \keyw{Abrasive Wear,Abrasive Wear Resistance,Adhesive Wear,Allotropic Transformation,Carbide Morphology} \endentry \entry{pettitOxidationHotCorrosion1984}{inproceedings}{}{} \name{author}{2}{}{% {{hash=b50a0861db1a72e0e5dd45311c3f6f46}{% family={Pettit}, familyi={P\bibinitperiod}, given={F.S.}, giveni={F\bibinitperiod}}}% {{hash=995d9eb870b532e5b6d84925bd865a9f}{% family={Meier}, familyi={M\bibinitperiod}, given={G.H.}, giveni={G\bibinitperiod}}}% } \list{publisher}{1}{% {TMS}% } \strng{namehash}{05317eddefe6d22cc5f5d0069b0a72a6} \strng{fullhash}{05317eddefe6d22cc5f5d0069b0a72a6} \strng{fullhashraw}{05317eddefe6d22cc5f5d0069b0a72a6} \strng{bibnamehash}{05317eddefe6d22cc5f5d0069b0a72a6} \strng{authorbibnamehash}{05317eddefe6d22cc5f5d0069b0a72a6} \strng{authornamehash}{05317eddefe6d22cc5f5d0069b0a72a6} \strng{authorfullhash}{05317eddefe6d22cc5f5d0069b0a72a6} \strng{authorfullhashraw}{05317eddefe6d22cc5f5d0069b0a72a6} \field{sortinit}{9} \field{sortinithash}{0a5ebc79d83c96b6579069544c73c7d4} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The oxidation, mixed gas corrosion and hot corrosion of nickel-, cobaltand iron-base superalloys at temperatures above about 6OOC are examined. It is shown that the superalloys develop resistance to corrosion by forming either alumina or chromia scales upon their surfaces. The times for which such oxide reaction product barriers are stable upon the surfaces of superalloys is discussed by first considering how these oxide scales are formed and then how they are destroyed in use. It is shown for oxidation environments that these oxide scales are degraded primarily via cracking and spalling. When mixed gas environments are encountered, the degradation is also affected by the other reactants in the gas phase. The most severe conditions are shown to be those inducing hot corrosion attack where the oxide scales are subjected to not only mixed gas conditions but also the fluxing action of molten deposits. The behavior of nickel-, cobalt-, and iron-base superalloys are compared and the effects of the various alloying elements are discussed.} \field{booktitle}{Superalloys 1984 ({{Fifth International Symposium}})} \field{eventtitle}{Superalloys} \field{langid}{english} \field{title}{Oxidation and {{Hot Corrosion}} of {{Superalloys}}} \field{urlday}{17} \field{urlmonth}{5} \field{urlyear}{2025} \field{year}{1984} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{651\bibrangedash 687} \range{pages}{37} \verb{doi} \verb 10.7449/1984/Superalloys_1984_651_687 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/3NLQQ7W4/Pettit and Meier - 1984 - Oxidation and Hot Corrosion of Superalloys.pdf \endverb \verb{urlraw} \verb http://www.tms.org/Superalloys/10.7449/1984/Superalloys_1984_651_687.pdf \endverb \verb{url} \verb http://www.tms.org/Superalloys/10.7449/1984/Superalloys_1984_651_687.pdf \endverb \endentry \entry{zhangPittingCorrosionCharacterization2014}{article}{}{} \name{author}{4}{}{% {{hash=3d3c96ee0dea81aaeaaee5f28cc812c8}{% family={Zhang}, familyi={Z\bibinitperiod}, given={X.\bibnamedelimi Z.}, giveni={X\bibinitperiod\bibinitdelim Z\bibinitperiod}}}% {{hash=47fa1cfa42f039e59f4e014c1941c712}{% family={Liu}, familyi={L\bibinitperiod}, given={R.}, giveni={R\bibinitperiod}}}% {{hash=031a8718c5c3986f8c22b3e59c743db1}{% family={Chen}, familyi={C\bibinitperiod}, given={K.\bibnamedelimi Y.}, giveni={K\bibinitperiod\bibinitdelim Y\bibinitperiod}}}% {{hash=276801cdeff1b23dc886b6bae5eac7a4}{% family={Yao}, familyi={Y\bibinitperiod}, given={M.\bibnamedelimi X.}, giveni={M\bibinitperiod\bibinitdelim X\bibinitperiod}}}% } \strng{namehash}{bcba69d759e461d767e492b9ac899400} \strng{fullhash}{273e8d866760310d3ddbd54c3734088a} \strng{fullhashraw}{273e8d866760310d3ddbd54c3734088a} \strng{bibnamehash}{273e8d866760310d3ddbd54c3734088a} \strng{authorbibnamehash}{273e8d866760310d3ddbd54c3734088a} \strng{authornamehash}{bcba69d759e461d767e492b9ac899400} \strng{authorfullhash}{273e8d866760310d3ddbd54c3734088a} \strng{authorfullhashraw}{273e8d866760310d3ddbd54c3734088a} \field{extraname}{3} \field{sortinit}{9} \field{sortinithash}{0a5ebc79d83c96b6579069544c73c7d4} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{This article presents a study of the corrosion behavior of two wrought Stellite alloys, Stellite 6B, and Stellite 6K, in Green Death solution, utilizing the extreme value analysis (EVA) model, which is a statistics tool developed based on the Gumbel distribution. Green Death solution a typical oxidized testing solution used in industry for assessing the corrosion resistance of materials. The data of maximum pit depths are obtained from the immersion tests on these alloys for various exposure periods. The top ten maximum pit depths in each specimen surface after the immersion test are measured using a surface texture and contour measuring instrument. These data are the input parameters of the EVA model and the outcomes of the model are the extreme values (minimum thickness) required for the alloys under a given service condition. It is shown that Stellite 6K, which contains higher carbon content but smaller-size carbides, exhibits better corrosion resistance in regard to the extreme value. The results and mechanisms of Stellite 6B and Stellite 6K in Green Death solution corrosion are discussed.} \field{day}{1} \field{issn}{1544-1024} \field{journaltitle}{Journal of Materials Engineering and Performance} \field{langid}{english} \field{month}{5} \field{number}{5} \field{shortjournal}{J. of Materi Eng and Perform} \field{title}{Pitting {{Corrosion Characterization}} of {{Wrought Stellite Alloys}} in {{Green Death Solution}} with {{Immersion Test}} and {{Extreme Value Analysis Model}}} \field{urlday}{17} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{23} \field{year}{2014} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{1718\bibrangedash 1725} \range{pages}{8} \verb{doi} \verb 10.1007/s11665-014-0952-5 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/WAIGNCXC/Zhang et al. - 2014 - Pitting Corrosion Characterization of Wrought Stellite Alloys in Green Death Solution with Immersion.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/s11665-014-0952-5 \endverb \verb{url} \verb https://doi.org/10.1007/s11665-014-0952-5 \endverb \keyw{carbide,Characterization and Analytical Technique,Corrosion,Criticality,extreme value analysis (EVA),immersion corrosion,Materials Characterization Technique,maximum pit depth,Metals and Alloys,Non-photochemical quenching,solid solution,stellite alloy} \endentry \entry{mohamedLocalizedCorrosionBehaviour1999}{article}{}{} \name{author}{4}{}{% {{hash=b8f550699a34b8bdf810849dddef3dc5}{% family={Mohamed}, familyi={M\bibinitperiod}, given={K.E.}, giveni={K\bibinitperiod}}}% {{hash=9fb0e54cbfb79e1dec0f3a30557123bc}{% family={Gad}, familyi={G\bibinitperiod}, given={M.M.A.}, giveni={M\bibinitperiod}}}% {{hash=6fd8465a1c8cd9402d3c1619bbb52b27}{% family={Nassef}, familyi={N\bibinitperiod}, given={A.E.}, giveni={A\bibinitperiod}}}% {{hash=7480c82fbd26434e80452206526ed7d8}{% family={El-Sayed}, familyi={E\bibinithyphendelim S\bibinitperiod}, given={A.W.A.}, giveni={A\bibinitperiod}}}% } \strng{namehash}{546de94fc131f3af6f540291b800c38c} \strng{fullhash}{00585e63961af6cb52f86f4577afca17} \strng{fullhashraw}{00585e63961af6cb52f86f4577afca17} \strng{bibnamehash}{00585e63961af6cb52f86f4577afca17} \strng{authorbibnamehash}{00585e63961af6cb52f86f4577afca17} \strng{authornamehash}{546de94fc131f3af6f540291b800c38c} \strng{authorfullhash}{00585e63961af6cb52f86f4577afca17} \strng{authorfullhashraw}{00585e63961af6cb52f86f4577afca17} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In the present investigation, electrochemical corrosion techniques (cyclic potentiodynamic and potentiostatic) were used to study the localized corrosion (pitting/crevice) behaviour of a cobalt-base alloy, Stellite-6. This alloy was produced by two different powder metallurgy (P/M) processing routes, namely, hot isostatic pressing (HIP) and wet powder pouring (WPP). The behaviour of the wrought alloy was also investigated for comparison. Corrosion tests were performed in neutral 3\% NaCl solution at ambient temperature. The results showed that the HIP material possessed the highest resistance to localized corrosion. This was explained in relation to the processing parameters and the microstructure of the alloy. The results of runs conducted in neutral test solutions showed that the critical crevice temperature, CCT, is certainly above the test temperature (room temperature). However, lowering the test solution pH (to 3 and 1.5) led to the onset of crevice corrosion. It was clear that the severity of the attack depends on the electrochemical technique applied as well as on the pH of the test solution. The electrochemical findings were further supplemented by surface examinations (SEM and EDX) of the corroded specimens.} \field{issn}{0044-3093} \field{journaltitle}{Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques} \field{langid}{english} \field{number}{3} \field{title}{Localized Corrosion Behaviour of Powder Metallurgy Processed Cobalt-Base Alloy {{Stellite-6}} in Chloride Environments} \field{volume}{90} \field{year}{1999} \field{dateera}{ce} \field{pages}{195\bibrangedash 201} \range{pages}{7} \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/CEIVSTJA/Mohamed et al. - 1999 - Localized Corrosion Behaviour of Powder Metallurgy Processed Cobalt-base Alloy Stellite-6 in Chlorid.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/FA4MZ8MY/display.html \endverb \endentry \entry{lemaireEvidenceTribocorrosionWear2001}{article}{}{} \name{author}{2}{}{% {{hash=4c183cb59f9f43105f9dbc6a9a6d8f4f}{% family={Lemaire}, familyi={L\bibinitperiod}, given={E}, giveni={E\bibinitperiod}}}% {{hash=ecef19dbb1f2ac3114cca8eb4e9057d4}{% family={Le\bibnamedelima Calvar}, familyi={L\bibinitperiod\bibinitdelim C\bibinitperiod}, given={M}, giveni={M\bibinitperiod}}}% } \strng{namehash}{96d90549a95589cb57e3fb8e4514b9cb} \strng{fullhash}{96d90549a95589cb57e3fb8e4514b9cb} \strng{fullhashraw}{96d90549a95589cb57e3fb8e4514b9cb} \strng{bibnamehash}{96d90549a95589cb57e3fb8e4514b9cb} \strng{authorbibnamehash}{96d90549a95589cb57e3fb8e4514b9cb} \strng{authornamehash}{96d90549a95589cb57e3fb8e4514b9cb} \strng{authorfullhash}{96d90549a95589cb57e3fb8e4514b9cb} \strng{authorfullhashraw}{96d90549a95589cb57e3fb8e4514b9cb} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The wear of the cobalt-based hardfacing alloy Stellite grade 6, which is used for part of the latch arms of control rod drive mechanisms (CRDM) in pressurized water nuclear reactors, has been studied. The investigations were based on field experience (nondestructive inspection) and on metallurgical examinations of specimens from laboratory studies. A wear mechanism based on tribocorrosion was found to account well for all available data relating to the wear characteristics of latch arms. In particular, such a mechanism is compatible with the specular polished aspect of the worn surface. A simple model based on two main parameters has been developed to assess the remaining life of CRDM latch arms. The first and principal parameter is the number of mechanical interactions between the latch arms and the drive rod (which defines the number of depassivation steps). The second parameter is the mean time between two consecutive steps (which defines the period for material removal during repassivation). The shape of the time distribution of steps does not have a great effect on life prediction within an error band of 25\%. This model accounts well for the discrepancies between laboratory loop results and wear measurements in plants. The wear rate is at least four times higher in plants than in test loops. The values of the coefficient comparing the relative experience between field and laboratory are consistent with the knowledge of the electrochemical behavior of alloys that passivate in PWR primary water.} \field{day}{1} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{6} \field{number}{5} \field{shortjournal}{Wear} \field{title}{Evidence of Tribocorrosion Wear in Pressurized Water Reactors} \field{urlday}{17} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{249} \field{year}{2001} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{338\bibrangedash 344} \range{pages}{7} \verb{doi} \verb 10.1016/S0043-1648(00)00544-5 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/IMXDJ3B9/Lemaire and Le Calvar - 2001 - Evidence of tribocorrosion wear in pressurized water reactors.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/7KUTF2L8/S0043164800005445.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0043164800005445 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0043164800005445 \endverb \keyw{Metallurgical examination,Pressurized water,Stellite 6,Tribocorrosion} \endentry \entry{dimartinoCorrosionMetalsAlloys2004}{article}{}{} \name{author}{5}{}{% {{hash=282a908dcb92f71195106958bd243ec8}{% family={Di\bibnamedelima Martino}, familyi={D\bibinitperiod\bibinitdelim M\bibinitperiod}, given={J}, giveni={J\bibinitperiod}}}% {{hash=36fd4576c6835710208dd7c08c4c86c6}{% family={Rapin}, familyi={R\bibinitperiod}, given={C}, giveni={C\bibinitperiod}}}% {{hash=d1c15168d6cb94e298f074ebe5da6801}{% family={Berthod}, familyi={B\bibinitperiod}, given={P}, giveni={P\bibinitperiod}}}% {{hash=aa39e6b58139ff23df92c1a014c2e167}{% family={Podor}, familyi={P\bibinitperiod}, given={R}, giveni={R\bibinitperiod}}}% {{hash=8839d184bf2cd9146aa2d6c6fb78bd0d}{% family={Steinmetz}, familyi={S\bibinitperiod}, given={P}, giveni={P\bibinitperiod}}}% } \strng{namehash}{41b99dcddfe83a8e0250ee58e9811439} \strng{fullhash}{677698c14da9e24e98a4e9c657655797} \strng{fullhashraw}{677698c14da9e24e98a4e9c657655797} \strng{bibnamehash}{677698c14da9e24e98a4e9c657655797} \strng{authorbibnamehash}{677698c14da9e24e98a4e9c657655797} \strng{authornamehash}{41b99dcddfe83a8e0250ee58e9811439} \strng{authorfullhash}{677698c14da9e24e98a4e9c657655797} \strng{authorfullhashraw}{677698c14da9e24e98a4e9c657655797} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{shorttitle} \field{abstract}{Electrochemical methods have been used for the characterisation of high chromium alloys corrosion in molten glasses (cobalt and nickel base alloys in a borosilicate glass at 1050 °C, with rotating working electrodes). All the tested alloys are active but passivable materials. The active state is characterised by a rapid dissolution of the constitutive elements of the alloy in the glass melt. The passive state can be obtained by an air oxidation of the alloys (called preoxidation) or with a temporary anodic polarisation of the alloy. The obtained passive state is due to the presence of a thin protective chromia scale.} \field{day}{1} \field{issn}{0010-938X} \field{journaltitle}{Corrosion Science} \field{month}{8} \field{number}{8} \field{shortjournal}{Corrosion Science} \field{shorttitle}{Corrosion of Metals and Alloys in Molten Glasses. {{Part}} 2} \field{title}{Corrosion of Metals and Alloys in Molten Glasses. {{Part}} 2: Nickel and Cobalt High Chromium Superalloys Behaviour and Protection} \field{urlday}{17} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{46} \field{year}{2004} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{1865\bibrangedash 1881} \range{pages}{17} \verb{doi} \verb 10.1016/j.corsci.2003.10.025 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/2J4AD7TV/Di Martino et al. - 2004 - Corrosion of metals and alloys in molten glasses. Part 2 nickel and cobalt high chromium superalloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/96ZCQVRL/S0010938X03003081.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0010938X03003081 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0010938X03003081 \endverb \keyw{A. Glass,A. Superalloys,B. Electrochemical calculation,B. SEM,C. High temperature corrosion} \endentry \entry{neville306AqueousCorrosion2010}{incollection}{}{} \name{author}{2}{}{% {{hash=c00a172220606f67c3da2492047a9b71}{% family={Neville}, familyi={N\bibinitperiod}, given={A.}, giveni={A\bibinitperiod}}}% {{hash=71f57eb10950396ed3fa62c703ddaee5}{% family={Malayoglu}, familyi={M\bibinitperiod}, given={U.}, giveni={U\bibinitperiod}}}% } \name{editor}{7}{}{% {{hash=891a76a6a083dea5b0dfbf1aad439756}{% family={Cottis}, familyi={C\bibinitperiod}, given={Bob}, giveni={B\bibinitperiod}}}% {{hash=f7a010ce705501fc2390aeb22ab7ddc3}{% family={Graham}, familyi={G\bibinitperiod}, given={Michael}, giveni={M\bibinitperiod}}}% {{hash=3b9e70be089a8cf3e69078b2389ca833}{% family={Lindsay}, familyi={L\bibinitperiod}, given={Robert}, giveni={R\bibinitperiod}}}% {{hash=3fc64f10863632a911a014d49c2b1be0}{% family={Lyon}, familyi={L\bibinitperiod}, given={Stuart}, giveni={S\bibinitperiod}}}% {{hash=5a486c476469fd17bf31c765c3e1dadf}{% family={Richardson}, familyi={R\bibinitperiod}, given={Tony}, giveni={T\bibinitperiod}}}% {{hash=0b46db42faea297f734dfb39f99a5104}{% family={Scantlebury}, familyi={S\bibinitperiod}, given={David}, giveni={D\bibinitperiod}}}% {{hash=44a6ddf92c621848daf903f736e72768}{% family={Stott}, familyi={S\bibinitperiod}, given={Howard}, giveni={H\bibinitperiod}}}% } \list{location}{1}{% {Oxford}% } \list{publisher}{1}{% {Elsevier}% } \strng{namehash}{9593ff71fc126477835f10aeb0544b21} \strng{fullhash}{9593ff71fc126477835f10aeb0544b21} \strng{fullhashraw}{9593ff71fc126477835f10aeb0544b21} \strng{bibnamehash}{9593ff71fc126477835f10aeb0544b21} \strng{authorbibnamehash}{9593ff71fc126477835f10aeb0544b21} \strng{authornamehash}{9593ff71fc126477835f10aeb0544b21} \strng{authorfullhash}{9593ff71fc126477835f10aeb0544b21} \strng{authorfullhashraw}{9593ff71fc126477835f10aeb0544b21} \strng{editorbibnamehash}{62b4a8655624e30b37c3cb323735b82d} \strng{editornamehash}{9faaee08d6928b1d393abb04714cc8c3} \strng{editorfullhash}{62b4a8655624e30b37c3cb323735b82d} \strng{editorfullhashraw}{62b4a8655624e30b37c3cb323735b82d} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Cobalt-base alloys are of great importance in engineering applications across a wide range of sectors from oil and gas to biomedical and this chapter assesses their metallurgy and their corrosion resistance and performance where corrosion is accentuated by a mechanical wear processes. It is intended to guide the reader to the wealth of research work which has been conducted on Co-base alloys.} \field{booktitle}{Shreir's {{Corrosion}}} \field{day}{1} \field{isbn}{978-0-444-52787-5} \field{month}{1} \field{title}{3.06 - {{Aqueous Corrosion}} of {{Cobalt}} and Its {{Alloys}}} \field{urlday}{8} \field{urlmonth}{6} \field{urlyear}{2025} \field{year}{2010} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{1916\bibrangedash 1936} \range{pages}{21} \verb{doi} \verb 10.1016/B978-044452787-5.00093-7 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/MM4GAJ9X/Neville and Malayoglu - 2010 - 3.06 - Aqueous Corrosion of Cobalt and its Alloys.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/REYSLEE5/B9780444527875000937.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/B9780444527875000937 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/B9780444527875000937 \endverb \endentry \entry{ahmedInfluenceAlloyComposition2025}{article}{}{} \name{author}{5}{}{% {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% family={Ahmed}, familyi={A\bibinitperiod}, given={R.}, giveni={R\bibinitperiod}}}% {{hash=a662108e4098710ee8727851db5c5311}{% family={Kumar}, familyi={K\bibinitperiod}, given={V.}, giveni={V\bibinitperiod}}}% {{hash=7e2f8097b044a6f2cc72af10f2bab7de}{% family={Faisal}, familyi={F\bibinitperiod}, given={Nadimul\bibnamedelima Haque}, giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=690c1336204a7aa844331ac7e4e80557}{% family={Marri}, familyi={M\bibinitperiod}, given={M.}, giveni={M\bibinitperiod}}}% {{hash=0e68382b25995f7a55c9b600def7c365}{% family={Davies}, familyi={D\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% } \strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f} \strng{fullhash}{61eba38c61d6357b5eb1e4220528bf89} \strng{fullhashraw}{61eba38c61d6357b5eb1e4220528bf89} \strng{bibnamehash}{61eba38c61d6357b5eb1e4220528bf89} \strng{authorbibnamehash}{61eba38c61d6357b5eb1e4220528bf89} \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} \strng{authorfullhash}{61eba38c61d6357b5eb1e4220528bf89} \strng{authorfullhashraw}{61eba38c61d6357b5eb1e4220528bf89} \field{extraname}{4} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{This paper aims to investigate the structure–property relationship of the blend of two different carbide-type wear resistance Stellite® alloys, i.e., high-carbon and high-tungsten CoCrWMoCFeNiSiMn (Stellite 1) alloy and high-molybdenum CoCrMoCFeNiSiMn (Stellite 21) alloy. Blended alloys can be tailored to specific tribomechanical properties that cannot be achieved using standard pre-alloyed powders. Gas-atomized powders were HIPed (hot isostatically pressed) in an argon environment for 4~h at a temperature and pressure of 1200~°C and 100~MPa, respectively. The microstructure of the alloys was investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Micro-hardness, macro-hardness (HV), tensile and Charpy impact tests were performed to characterize the mechanical properties. Wear properties were investigated using dry sand rubber wheel (DSRW), self-mated pin-on-disk (PoD) and ball-on-flat (BoF) tests. Relationships between the chemical composition of the alloys and total carbide fraction (TCF), hardness, yield strength and Charpy impact energy (\$\$\{\textbackslash text\{E\}\}\_\{\textbackslash text\{c\}\}\$\$) were investigated. Structure–property relationships are developed between the wear rate and chemical composition via mechanical properties. Wear mechanisms are discussed based on phase composition and alloy microstructure. The wear performance was more dominated by relationship \$\$\textbackslash left(\textbackslash frac\{\textbackslash text\{TCF \}\textbackslash times \textbackslash text\{HV\}\}\{\{\textbackslash text\{E\}\}\_\{\textbackslash text\{c\}\}\}\textbackslash right)\$\$. Mathematical relationships of wear rate are developed which can be applied to both CoCrW and CoCrWMo alloy blends.} \field{day}{24} \field{issn}{1544-1024} \field{journaltitle}{Journal of Materials Engineering and Performance} \field{langid}{english} \field{month}{3} \field{shortjournal}{J. of Materi Eng and Perform} \field{title}{Influence of {{Alloy Composition}} on the {{Tribomechanical Properties}} of 50\% {{Blend}} of {{CoCrWMoCFeNiSiMn}} ({{Stellite}} 1) and {{CoCrMoCFeNiSiMn}} ({{Stellite}} 21) {{Alloys}}} \field{urlday}{2} \field{urlmonth}{6} \field{urlyear}{2025} \field{year}{2025} \field{dateera}{ce} \field{urldateera}{ce} \verb{doi} \verb 10.1007/s11665-025-11034-7 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/SHUK4BIF/Ahmed et al. - 2025 - Influence of Alloy Composition on the Tribomechanical Properties of 50% Blend of CoCrWMoCFeNiSiMn (S.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/s11665-025-11034-7 \endverb \verb{url} \verb https://doi.org/10.1007/s11665-025-11034-7 \endverb \keyw{blending,cobalt alloys,HIPing,Materials Chemistry,Materials Engineering,Materials Science,mechanical properties,Metals and Alloys,Mineralogy,sliding wear,stellite alloys,structure–property relationship,Tribology} \endentry \entry{sageMethodeDanalyseQuantitative1950}{article}{}{} \name{author}{2}{}{% {{hash=9bf4a6d21c884c679e1fe1a2445eea7c}{% family={Sage}, familyi={S\bibinitperiod}, given={M.}, giveni={M\bibinitperiod}}}% {{hash=27c9aa665c9b205144003d0b7991256d}{% family={Guillaud}, familyi={G\bibinitperiod}, given={Ch}, giveni={C\bibinitperiod}}}% } \list{publisher}{1}{% {EDP Sciences}% } \strng{namehash}{ed7067987971fd96ed245e002a62b5f1} \strng{fullhash}{ed7067987971fd96ed245e002a62b5f1} \strng{fullhashraw}{ed7067987971fd96ed245e002a62b5f1} \strng{bibnamehash}{ed7067987971fd96ed245e002a62b5f1} \strng{authorbibnamehash}{ed7067987971fd96ed245e002a62b5f1} \strng{authornamehash}{ed7067987971fd96ed245e002a62b5f1} \strng{authorfullhash}{ed7067987971fd96ed245e002a62b5f1} \strng{authorfullhashraw}{ed7067987971fd96ed245e002a62b5f1} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Metallurgical Research \& Technology, an international journal for steel and other metals: from making to using} \field{annotation}{81 citations (Semantic Scholar/DOI) [2025-04-12]} \field{day}{1} \field{issn}{0035-1563, 1156-3141} \field{issue}{2} \field{journaltitle}{Revue de Métallurgie} \field{langid}{french} \field{month}{2} \field{number}{2} \field{shortjournal}{Rev. Met. Paris} \field{title}{Méthode d'analyse quantitative des variétés allotropiques du cobalt par les rayons X} \field{urlday}{12} \field{urlmonth}{4} \field{urlyear}{2025} \field{volume}{47} \field{year}{1950} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{139\bibrangedash 145} \range{pages}{7} \verb{doi} \verb 10.1051/metal/195047020139 \endverb \verb{urlraw} \verb https://www.metallurgical-research.org/articles/metal/abs/1950/02/metal19504702p139/metal19504702p139.html \endverb \verb{url} \verb https://www.metallurgical-research.org/articles/metal/abs/1950/02/metal19504702p139/metal19504702p139.html \endverb \endentry \entry{reedRelationshipStackingfaultEnergy1974}{article}{}{} \name{author}{2}{}{% {{hash=88f5da437048616f4af617f22c29fbdf}{% family={Reed}, familyi={R\bibinitperiod}, given={R.\bibnamedelimi P.}, giveni={R\bibinitperiod\bibinitdelim P\bibinitperiod}}}% {{hash=d3ad0e5b45535a908e807b4fee08ee28}{% family={Schramm}, familyi={S\bibinitperiod}, given={R.\bibnamedelimi E.}, giveni={R\bibinitperiod\bibinitdelim E\bibinitperiod}}}% } \strng{namehash}{a9892fb10b39ca1c571d17815e78eb97} \strng{fullhash}{a9892fb10b39ca1c571d17815e78eb97} \strng{fullhashraw}{a9892fb10b39ca1c571d17815e78eb97} \strng{bibnamehash}{a9892fb10b39ca1c571d17815e78eb97} \strng{authorbibnamehash}{a9892fb10b39ca1c571d17815e78eb97} \strng{authornamehash}{a9892fb10b39ca1c571d17815e78eb97} \strng{authorfullhash}{a9892fb10b39ca1c571d17815e78eb97} \strng{authorfullhashraw}{a9892fb10b39ca1c571d17815e78eb97} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Stacking‐fault energies can be determined by measuring the positions and profiles of x‐ray diffraction lines. Use of this method has been hampered by the uncertainty of the relationship between stacking‐fault energy and the ratio of microstrain to stacking‐fault probability. Microstrains and stacking‐fault probabilities have been determined for five fcc metals by x‐ray diffraction line profile analysis. For these metals, Ag, Au, Cu, Al, and Ni, stacking‐fault energies have been estimated from a comprehensive updated review of the experimental literature. A linear correlation does exist between γ and 〈ε502〉111/α and thus, the x‐ray technique can be applied more confidently. The possible role of elastic anisotropy is also considered.} \field{day}{1} \field{issn}{0021-8979} \field{journaltitle}{Journal of Applied Physics} \field{month}{11} \field{number}{11} \field{shortjournal}{Journal of Applied Physics} \field{title}{Relationship between Stacking‐fault Energy and X‐ray Measurements of Stacking‐fault Probability and Microstrain} \field{urlday}{30} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{45} \field{year}{1974} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{4705\bibrangedash 4711} \range{pages}{7} \verb{doi} \verb 10.1063/1.1663122 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/3B5FPQP7/Reed and Schramm - 1974 - Relationship between stacking‐fault energy and x‐ray measurements of stacking‐fault probability and.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/Y5UAYLXY/Relationship-between-stacking-fault-energy-and-x.html \endverb \verb{urlraw} \verb https://doi.org/10.1063/1.1663122 \endverb \verb{url} \verb https://doi.org/10.1063/1.1663122 \endverb \endentry \entry{mcintyreXRayPhotoelectronSpectroscopic1979}{article}{}{} \name{author}{3}{}{% {{hash=df2bb06cbe95e9faaa65206f72765216}{% family={McIntyre}, familyi={M\bibinitperiod}, given={N.\bibnamedelimi S.}, giveni={N\bibinitperiod\bibinitdelim S\bibinitperiod}}}% {{hash=fc9097282acc465dc58d590fcf3d4b96}{% family={Zetaruk}, familyi={Z\bibinitperiod}, given={D.}, giveni={D\bibinitperiod}}}% {{hash=8bd8e44b953aeb5c525be802ec5059ca}{% family={Murphy}, familyi={M\bibinitperiod}, given={E.\bibnamedelimi V.}, giveni={E\bibinitperiod\bibinitdelim V\bibinitperiod}}}% } \strng{namehash}{4004ff1796f3e3adf525777927c4246d} \strng{fullhash}{7ec7642f1ad7533a0152b1301c3bdb83} \strng{fullhashraw}{7ec7642f1ad7533a0152b1301c3bdb83} \strng{bibnamehash}{7ec7642f1ad7533a0152b1301c3bdb83} \strng{authorbibnamehash}{7ec7642f1ad7533a0152b1301c3bdb83} \strng{authornamehash}{4004ff1796f3e3adf525777927c4246d} \strng{authorfullhash}{7ec7642f1ad7533a0152b1301c3bdb83} \strng{authorfullhashraw}{7ec7642f1ad7533a0152b1301c3bdb83} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The aqueous oxidation of the cobalt allow Stellite-6 has been studied in pH 10 water 285°C, as a function of dissolved oxygen concentration and length of exposure time. The result surface films were analysed by X-ray photoelectron spectroscopy (XPS) and other techniques. Using XPS, a quantitative measurement of the oxide and metallic surface components was obtained and depth-concentration profiles were determined. The effect of gaseous oxidation on the surface composition was also studied, and from a comparison of the oxidation behaviour under aqueous and gas phase conditions, solid state and solution-transport processes could be distinguished. The gas phase studies showed that cobalt ions diffuse preferentially to the outer surface. During aqueous oxidation, however, the surface composition is found to be depleted in cobalt; preferential dissolution of the cobalt component of the alloy is therefore occurring under these aqueous conditions.} \field{issn}{1096-9918} \field{issue}{4} \field{journaltitle}{Surface and Interface Analysis} \field{langid}{english} \field{number}{4} \field{title}{X-{{Ray}} Photoelectron Spectroscopic Study of the Aqueous Oxidation of Stellite-6 Alloy} \field{urlday}{11} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{1} \field{year}{1979} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{105\bibrangedash 110} \range{pages}{6} \verb{doi} \verb 10.1002/sia.740010402 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/BSDEBQYA/McIntyre et al. - 1979 - X-Ray photoelectron spectroscopic study of the aqueous oxidation of stellite-6 alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/QV42CTCY/sia.html \endverb \verb{urlraw} \verb https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.740010402 \endverb \verb{url} \verb https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.740010402 \endverb \endentry \entry{cesanekDeteriorationLocalMechanical2015}{article}{}{} \name{author}{5}{}{% {{hash=e14661379f9189356b0882960baa4105}{% family={Česánek}, familyi={Č\bibinitperiod}, given={Zdeněk}, giveni={Z\bibinitperiod}}}% {{hash=93d52e6b0aef9925e3819b80882a6cda}{% family={Schubert}, familyi={S\bibinitperiod}, given={Jan}, giveni={J\bibinitperiod}}}% {{hash=31762ba844a6f927048cfe7931b05d7c}{% family={Houdková}, familyi={H\bibinitperiod}, given={Šárka}, giveni={Š\bibinitperiod}}}% {{hash=d9b21b75ed40962f06b7546c1f3597b4}{% family={Bláhová}, familyi={B\bibinitperiod}, given={Olga}, giveni={O\bibinitperiod}}}% {{hash=d2a08a1028ba73a0fd73b485d73d0037}{% family={Prantnerová}, familyi={P\bibinitperiod}, given={Michaela}, giveni={M\bibinitperiod}}}% } \list{publisher}{1}{% {Trans Tech Publications Ltd}% } \strng{namehash}{0aa8f9e0af245f5af3aaf91e7be37e8f} \strng{fullhash}{9f9eaf92f70912e02b4d02160a62f72d} \strng{fullhashraw}{9f9eaf92f70912e02b4d02160a62f72d} \strng{bibnamehash}{9f9eaf92f70912e02b4d02160a62f72d} \strng{authorbibnamehash}{9f9eaf92f70912e02b4d02160a62f72d} \strng{authornamehash}{0aa8f9e0af245f5af3aaf91e7be37e8f} \strng{authorfullhash}{9f9eaf92f70912e02b4d02160a62f72d} \strng{authorfullhashraw}{9f9eaf92f70912e02b4d02160a62f72d} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Coating properties determine its behavior in operation. The simulation of future operational conditions is therefore the best quality test. The evaluation during operation is usually not possible to perform, and the coatings are therefore frequently characterized by their physical or mechanical properties. This text deals with the high temperature corrosion of HVOF sprayed Stellite 6 coating and with changes of its local mechanical properties before and after the corrosion testing. High temperature corrosion is defined as a corrosion in the presence of molten salts. In this case, the mixture of salts in composition of 59\% Na2(SO)4 with 34.5\% KCl and 6.5\% NaCl was used. Two exposure temperatures 525 °C and 575 °C were selected and the tests for both temperatures were performed in the time interval of 168h in the autoclave. The coating with salt mixture layer was analyzed using scanning electron microscopy and nanoindentation. The high temperature resistance of Stellite 6 coating was evaluated according to the changes in the coating surface and by the occurrence of individual phases formed on the coating surface during the test. Generally, it can be said that the Stellite 6 alloys deposited by HVOF technology show selective oxidation under the salt film. This fact was also proved in this study. Furthermore, the nanoindentation measurements of Stellite 6 coating were performed before and after the corrosion testing. These measurements were used to evaluate the change of local mechanical coating properties.} \field{issn}{1662-9795} \field{journaltitle}{Key Engineering Materials} \field{langid}{english} \field{title}{Deterioration of {{Local Mechanical Properties}} of {{HVOF-Sprayed Stellite}} 6 after {{Exposure}} to {{High-Temperature Corrosion}}} \field{urlday}{11} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{662} \field{year}{2015} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{115\bibrangedash 118} \range{pages}{4} \verb{doi} \verb 10.4028/www.scientific.net/KEM.662.115 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/PSDLCDNA/Česánek et al. - 2015 - Deterioration of Local Mechanical Properties of HVOF-Sprayed Stellite 6 after Exposure to High-Tempe.pdf \endverb \verb{urlraw} \verb https://www.scientific.net/KEM.662.115 \endverb \verb{url} \verb https://www.scientific.net/KEM.662.115 \endverb \endentry \entry{heathcockCavitationErosionCobaltbased1981}{article}{}{} \name{author}{3}{}{% {{hash=43bde4e6774ef6c551b54aadd6f79600}{% family={Heathcock}, familyi={H\bibinitperiod}, given={C.\bibnamedelimi J.}, giveni={C\bibinitperiod\bibinitdelim J\bibinitperiod}}}% {{hash=d948b40247ea691a1acb168206ae787e}{% family={Ball}, familyi={B\bibinitperiod}, given={A.}, giveni={A\bibinitperiod}}}% {{hash=bf26727ce8e6c3532d46e05477fa24db}{% family={Protheroe}, familyi={P\bibinitperiod}, given={B.\bibnamedelimi E.}, giveni={B\bibinitperiod\bibinitdelim E\bibinitperiod}}}% } \strng{namehash}{40f4b0918469d6956e64035680378bae} \strng{fullhash}{69bcad4fe8cd5cb52682f2ccb1e9db62} \strng{fullhashraw}{69bcad4fe8cd5cb52682f2ccb1e9db62} \strng{bibnamehash}{69bcad4fe8cd5cb52682f2ccb1e9db62} \strng{authorbibnamehash}{69bcad4fe8cd5cb52682f2ccb1e9db62} \strng{authornamehash}{40f4b0918469d6956e64035680378bae} \strng{authorfullhash}{69bcad4fe8cd5cb52682f2ccb1e9db62} \strng{authorfullhashraw}{69bcad4fe8cd5cb52682f2ccb1e9db62} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{A number of Stellite® alloys, cemented carbides and surface-treated alloy steels have been evaluated for erosion resistance. The ability of the Stellite alloys to withstand erosion is primarily a function of the cobalt-rich solid solution phase while erosion of cemented carbides is controlled predominantly by the binder phase. The nickel-based tungsten carbides are more resistant to erosion than the cobalt-based samples. Investigation of industrial surface treatments has demonstrated that erosion rates of hardened low alloy steels can be improved. For example, a hardened electroless nickel coating on BS 817M40 steel erodes at one-third the rate of uncoated BS 817M40 steel. A Tufftriding treatment, which is a proprietary method of carbonitriding, applied to the same steel caused a similar improvement in performance but only after an initial loss of the compound layer. Hard chrome coating is, in general, less effective than the above treatments in combating cavitation erosion.} \field{day}{8} \field{issn}{0043-1648} \field{journaltitle}{Wear} \field{month}{12} \field{number}{1} \field{shortjournal}{Wear} \field{title}{Cavitation Erosion of Cobalt-Based {{Stellite}}® Alloys, Cemented Carbides and Surface-Treated Low Alloy Steels} \field{urlday}{17} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{74} \field{year}{1981} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{11\bibrangedash 26} \range{pages}{16} \verb{doi} \verb 10.1016/0043-1648(81)90191-5 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/STL7SQ3B/Heathcock et al. - 1981 - Cavitation erosion of cobalt-based Stellite® alloys, cemented carbides and surface-treated low alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/U8S6RYXM/0043164881901915.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/0043164881901915 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/0043164881901915 \endverb \endentry \entry{francCavitationErosion2005}{incollection}{}{} \name{editor}{2}{}{% {{hash=82466166f53e07ad9568dba9555563e7}{% family={Franc}, familyi={F\bibinitperiod}, given={Jean-Pierre}, giveni={J\bibinithyphendelim P\bibinitperiod}}}% {{hash=441eced1863753c712f0eaa788cbc3d5}{% family={Michel}, familyi={M\bibinitperiod}, given={Jean-Marie}, giveni={J\bibinithyphendelim M\bibinitperiod}}}% } \list{location}{1}{% {Dordrecht}% } \list{publisher}{1}{% {Springer Netherlands}% } \strng{namehash}{9ef3cd89643a1a5e288c68eb93b9390c} \strng{fullhash}{9ef3cd89643a1a5e288c68eb93b9390c} \strng{fullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} \strng{bibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} \strng{editorbibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} \strng{editornamehash}{9ef3cd89643a1a5e288c68eb93b9390c} \strng{editorfullhash}{9ef3cd89643a1a5e288c68eb93b9390c} \strng{editorfullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{editor} \field{labeltitlesource}{title} \field{booktitle}{Fundamentals of {{Cavitation}}} \field{isbn}{978-1-4020-2233-3} \field{langid}{english} \field{title}{Cavitation {{Erosion}}} \field{urlday}{13} \field{urlmonth}{4} \field{urlyear}{2025} \field{year}{2005} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{265\bibrangedash 291} \range{pages}{27} \verb{doi} \verb 10.1007/1-4020-2233-6_12 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/7V6EQKB7/Fivel and Franc - Cavitation Erosion.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/CSDY4477/Franc and Michel - 2005 - Cavitation Erosion.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/1-4020-2233-6_12 \endverb \verb{url} \verb https://doi.org/10.1007/1-4020-2233-6_12 \endverb \keyw{Acoustic Impedance,Adverse Pressure Gradient,Mass Loss Rate,Pressure Pulse,Solid Wall} \endentry \entry{romoCavitationHighvelocitySlurry2012}{article}{}{} \name{author}{4}{}{% {{hash=abd07783347fdc165942b01479e16afb}{% family={Romo}, familyi={R\bibinitperiod}, given={S.A.}, giveni={S\bibinitperiod}}}% {{hash=9c9837ed5fce5c7a1aeb233aa99aa04d}{% family={Santa}, familyi={S\bibinitperiod}, given={J.F.}, giveni={J\bibinitperiod}}}% {{hash=fecaae68172b53756247ca68af700ed9}{% family={Giraldo}, familyi={G\bibinitperiod}, given={J.E.}, giveni={J\bibinitperiod}}}% {{hash=467faf266d1206e4566fe6d0465b33f0}{% family={Toro}, familyi={T\bibinitperiod}, given={A.}, giveni={A\bibinitperiod}}}% } \strng{namehash}{285bcf9d2b83436d537b5e21b7fde046} \strng{fullhash}{e0312588d226589c879f5d182ca350e9} \strng{fullhashraw}{e0312588d226589c879f5d182ca350e9} \strng{bibnamehash}{e0312588d226589c879f5d182ca350e9} \strng{authorbibnamehash}{e0312588d226589c879f5d182ca350e9} \strng{authornamehash}{285bcf9d2b83436d537b5e21b7fde046} \strng{authorfullhash}{e0312588d226589c879f5d182ca350e9} \strng{authorfullhashraw}{e0312588d226589c879f5d182ca350e9} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The cavitation and slurry erosion resistances of Stellite 6 coatings and 13-4 stainless steel were compared in laboratory. The Cavitation Resistance (CR) was measured according to ASTM G32 standard and the Slurry Erosion Resistance (SER) was tested in a high-velocity erosion tester under several impact angles. The results showed that the coatings improved the CR 15 times when compared to bare stainless steel. The SER of the coatings was also higher for all the impingement angles tested, the highest erosion rate being observed at 45°. The main wear mechanisms were micro-cracking (cavitation tests), and micro-cutting and micro-ploughing (slurry erosion tests). © 2011 Elsevier Ltd. All rights reserved.} \field{issn}{0301679X (ISSN)} \field{journaltitle}{Tribology International} \field{langid}{english} \field{shortjournal}{Tribol Int} \field{title}{Cavitation and High-Velocity Slurry Erosion Resistance of Welded {{Stellite}} 6 Alloy} \field{volume}{47} \field{year}{2012} \field{dateera}{ce} \field{pages}{16\bibrangedash 24} \range{pages}{9} \verb{doi} \verb 10.1016/j.triboint.2011.10.003 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/C96THNDH/Romo et al. - 2012 - Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/GSRI4IEV/S0301679X11002866.html \endverb \verb{urlraw} \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856240362&doi=10.1016%2fj.triboint.2011.10.003&partnerID=40&md5=77bc5b529937543083c683cc6f5d689d \endverb \verb{url} \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856240362&doi=10.1016%2fj.triboint.2011.10.003&partnerID=40&md5=77bc5b529937543083c683cc6f5d689d \endverb \keyw{alloy,Cavitation,Cavitation corrosion,Cavitation erosion,Cavitation resistance,Cerium alloys,Chromate coatings,Erosion,Erosion rates,High velocity,Impact angles,Impact resistance,Impingement angle,Micro-cutting,Slurry erosion,Stainless steel,Stellite,Stellite 6,Stellite 6 alloy,Stellite 6 coating,Tribology,Wear mechanisms} \endentry \entry{gevariDirectIndirectThermal2020}{article}{}{} \name{author}{5}{}{% {{hash=93d9cff817608f96c206941face4c5d7}{% family={Gevari}, familyi={G\bibinitperiod}, given={Moein\bibnamedelima Talebian}, giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod}}}% {{hash=e271948379fd6fee4bd30a4d576761b8}{% family={Abbasiasl}, familyi={A\bibinitperiod}, given={Taher}, giveni={T\bibinitperiod}}}% {{hash=67d0558f57dbf7548b5b43a80b85f47f}{% family={Niazi}, familyi={N\bibinitperiod}, given={Soroush}, giveni={S\bibinitperiod}}}% {{hash=efb87c095e41c6349ba97d939982e130}{% family={Ghorbani}, familyi={G\bibinitperiod}, given={Morteza}, giveni={M\bibinitperiod}}}% {{hash=311cf929c32c6c2ce5aa2728ae09ad47}{% family={Koşar}, familyi={K\bibinitperiod}, given={Ali}, giveni={A\bibinitperiod}}}% } \strng{namehash}{76843143b68c90c6ac5d9d854fd56c1f} \strng{fullhash}{7e654139b427bf36f3a25a5848105f5b} \strng{fullhashraw}{7e654139b427bf36f3a25a5848105f5b} \strng{bibnamehash}{7e654139b427bf36f3a25a5848105f5b} \strng{authorbibnamehash}{7e654139b427bf36f3a25a5848105f5b} \strng{authornamehash}{76843143b68c90c6ac5d9d854fd56c1f} \strng{authorfullhash}{7e654139b427bf36f3a25a5848105f5b} \strng{authorfullhashraw}{7e654139b427bf36f3a25a5848105f5b} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{shorttitle} \field{abstract}{The phase change phenomenon in fluids as a result of low local pressure under a critical value is known as cavitation. Acoustic wave propagation or hydrodynamic pressure drop of the working fluid are the main reasons for inception of this phenomenon. Considering the released energy from the collapsing cavitation bubbles as a reliable source has led to its implementation to different fields, namely, heat transfer, surface cleaning and fouling, water treatment, food industry, chemical reactions, energy harvesting. A considerable amount of energy in the mentioned industries is required for thermal applications. Cavitation could serve for minimizing the energy demand and optimizing the processes. Thus, the energy efficiency of the systems could be significantly enhanced. This review article focuses on the direct and indirect thermal applications of hydrodynamic and acoustic cavitation. Relevant studies with emerging applications are discussed, while developments in cavitation, which have given rise to thermal applications during the last decade, are also included in this review.} \field{annotation}{84 citations (Semantic Scholar/DOI) [2025-04-13]} \field{day}{5} \field{issn}{1359-4311} \field{journaltitle}{Applied Thermal Engineering} \field{month}{5} \field{shortjournal}{Applied Thermal Engineering} \field{shorttitle}{Direct and Indirect Thermal Applications of Hydrodynamic and Acoustic Cavitation} \field{title}{Direct and Indirect Thermal Applications of Hydrodynamic and Acoustic Cavitation: {{A}} Review} \field{urlday}{13} \field{urlmonth}{4} \field{urlyear}{2025} \field{volume}{171} \field{year}{2020} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{115065} \range{pages}{1} \verb{doi} \verb 10.1016/j.applthermaleng.2020.115065 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/I8UKGQW4/Gevari et al. - 2020 - Direct and indirect thermal applications of hydrodynamic and acoustic cavitation A review.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/UL8Z2A9S/S135943111937766X.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X \endverb \keyw{Acoustic cavitation,Food industry,Heat transfer enhancement,Hydrodynamic cavitation,Water treatment} \endentry \entry{huangMicrostructureEvolutionMartensite2023}{article}{}{} \name{author}{6}{}{% {{hash=55328195d8b2c0f90f11e12f5ddb7d65}{% family={Huang}, familyi={H\bibinitperiod}, given={Zonglian}, giveni={Z\bibinitperiod}}}% {{hash=2938deb5048323c6e1bfdd80975d5b28}{% family={Wang}, familyi={W\bibinitperiod}, given={Bo}, giveni={B\bibinitperiod}}}% {{hash=0138deaf332692ced30d823b9cebc488}{% family={Liu}, familyi={L\bibinitperiod}, given={Fei}, giveni={F\bibinitperiod}}}% {{hash=92c4cc87ddf9f0a5abb5ff8d5b8878d4}{% family={Song}, familyi={S\bibinitperiod}, given={Min}, giveni={M\bibinitperiod}}}% {{hash=971be18e8809118d44c885580820c916}{% family={Ni}, familyi={N\bibinitperiod}, given={Song}, giveni={S\bibinitperiod}}}% {{hash=eb96d2754cddae273dd482f087734e31}{% family={Liu}, familyi={L\bibinitperiod}, given={Shaojun}, giveni={S\bibinitperiod}}}% } \strng{namehash}{61779e4ce456f415f5dc118db21bed83} \strng{fullhash}{8ca9ebea09cf1f645c339306001d45ac} \strng{fullhashraw}{8ca9ebea09cf1f645c339306001d45ac} \strng{bibnamehash}{8ca9ebea09cf1f645c339306001d45ac} \strng{authorbibnamehash}{8ca9ebea09cf1f645c339306001d45ac} \strng{authornamehash}{61779e4ce456f415f5dc118db21bed83} \strng{authorfullhash}{8ca9ebea09cf1f645c339306001d45ac} \strng{authorfullhashraw}{8ca9ebea09cf1f645c339306001d45ac} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The influence of laser energy density and heat treatment on the microstructure and properties of Co-Cr-Mo-W alloys fabricated by selective laser melting (SLM) are investigated symmetrically. When the laser power, the scanning speed, and the scanning space are set as 160~W, 400~mm/s, and 0.07~mm, respectively, the SLM-ed Co-Cr-Mo-W alloys display high strength and good ductility simultaneously. The precipitates ranging from nano- to macro- scale are finely distributed in SLM-ed CoCr alloys grains and/or along the grain boundaries in the heat treated alloys. Co-Cr-Mo-W alloys with an excellent combination of strength and ductility can be achieved by tailoring the microstructure and morphology of SLM-ed alloys during the heat treatment. The tensile strength, yield strength, and elongation are 1221.38~±~10~MPa, 778.81~±~12~MPa, and 17.2~±~0.67\%, respectively.} \field{day}{1} \field{issn}{0263-4368} \field{journaltitle}{International Journal of Refractory Metals and Hard Materials} \field{month}{6} \field{shortjournal}{International Journal of Refractory Metals and Hard Materials} \field{title}{Microstructure Evolution, Martensite Transformation and Mechanical Properties of Heat Treated {{Co-Cr-Mo-W}} Alloys by Selective Laser Melting} \field{urlday}{13} \field{urlmonth}{4} \field{urlyear}{2025} \field{volume}{113} \field{year}{2023} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{106170} \range{pages}{1} \verb{doi} \verb 10.1016/j.ijrmhm.2023.106170 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ZJ5J6JMZ/Huang et al. - 2023 - Microstructure evolution, martensite transformation and mechanical properties of heat treated Co-Cr-.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/L9MFNPFY/S0263436823000707.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 \endverb \keyw{Co–Cr–Mo-W alloys,Heat treatment,Martensite phase transformation,Mechanical properties,Selective laser melting} \endentry \entry{tawancyFccHcpTransformation1986}{article}{}{} \name{author}{3}{}{% {{hash=f3547527506994c69c774b2c0d77ac73}{% family={Tawancy}, familyi={T\bibinitperiod}, given={H.\bibnamedelimi M.}, giveni={H\bibinitperiod\bibinitdelim M\bibinitperiod}}}% {{hash=f7d566a34064f3d0ccab33dde7a34069}{% family={Ishwar}, familyi={I\bibinitperiod}, given={V.\bibnamedelimi R.}, giveni={V\bibinitperiod\bibinitdelim R\bibinitperiod}}}% {{hash=6f964da88776c95344b60d3d9b6241fa}{% family={Lewis}, familyi={L\bibinitperiod}, given={B.\bibnamedelimi E.}, giveni={B\bibinitperiod\bibinitdelim E\bibinitperiod}}}% } \strng{namehash}{4de94c11cde2eac1de960723e9eac321} \strng{fullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} \strng{fullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} \strng{bibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} \strng{authorbibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} \strng{authornamehash}{4de94c11cde2eac1de960723e9eac321} \strng{authorfullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} \strng{authorfullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{annotation}{33 citations (Semantic Scholar/DOI) [2025-04-13]} \field{day}{1} \field{issn}{1573-4811} \field{journaltitle}{Journal of Materials Science Letters} \field{langid}{english} \field{month}{3} \field{number}{3} \field{shortjournal}{J Mater Sci Lett} \field{title}{On the Fcc → Hcp Transformation in a Cobalt-Base Superalloy ({{Haynes}} Alloy {{No}}. 25)} \field{urlday}{13} \field{urlmonth}{4} \field{urlyear}{2025} \field{volume}{5} \field{year}{1986} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{337\bibrangedash 341} \range{pages}{5} \verb{doi} \verb 10.1007/BF01748098 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/7Z6PUATK/Tawancy et al. - 1986 - On the fcc → hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25).pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/BF01748098 \endverb \verb{url} \verb https://doi.org/10.1007/BF01748098 \endverb \keyw{Haynes Alloy,Polymer,Polymers} \endentry \entry{stoicaInfluenceHeattreatmentSliding2005}{article}{}{} \name{author}{3}{}{% {{hash=9ee308ed1264406c99dc3dc19fc74bbc}{% family={Stoica}, familyi={S\bibinitperiod}, given={V.}, giveni={V\bibinitperiod}}}% {{hash=25252d98cf2cdf2878867f5c5a6110fb}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Rehan}, giveni={R\bibinitperiod}}}% {{hash=396db0229b4cd75917372e6b8a4c12ee}{% family={Itsukaichi}, familyi={I\bibinitperiod}, given={T.}, giveni={T\bibinitperiod}}}% } \strng{namehash}{1dad3e925506f0bfcbc611fb083a4a04} \strng{fullhash}{aa4b0cb4f0bb15f1361ec53647593242} \strng{fullhashraw}{aa4b0cb4f0bb15f1361ec53647593242} \strng{bibnamehash}{aa4b0cb4f0bb15f1361ec53647593242} \strng{authorbibnamehash}{aa4b0cb4f0bb15f1361ec53647593242} \strng{authornamehash}{1dad3e925506f0bfcbc611fb083a4a04} \strng{authorfullhash}{aa4b0cb4f0bb15f1361ec53647593242} \strng{authorfullhashraw}{aa4b0cb4f0bb15f1361ec53647593242} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Functionally graded WC-NiCrBSi coatings were thermally sprayed using a High Velocity Oxy-Fuel (JP5000) system and heat-treated at 1200 °C in argon environment. The relative performance of the as-sprayed and heat-treated coatings was investigated in sliding wear under different tribological conditions of contact stress, and test couple configuration, using a high frequency reciprocating ball on plate rig. Test results are discussed with the help of microstructural evaluations and mechanical properties measurements. Results indicate that by heat-treating the coatings at a temperature of 1200 °C, it is possible to achieve higher wear resistance, both in terms of coating wear, as well as the total wear of the test couples. This was attributed to the improvements in the coating microstructure during the heat-treatment, which resulted in an improvement in coating's mechanical properties through the formation of hard phases, elimination of brittle W2C and W, and the establishment of metallurgical bonding within the coating microstructure. © 2005 Elsevier B.V. All rights reserved.} \field{annotation}{41 citations (Semantic Scholar/DOI) [2025-04-20]\\ 41 citations (Semantic Scholar/DOI) [2025-04-12]} \field{issn}{02578972 (ISSN)} \field{journaltitle}{Surface and Coatings Technology} \field{langid}{english} \field{number}{1} \field{shortjournal}{Surf. Coat. Technol.} \field{title}{Influence of Heat-Treatment on the Sliding Wear of Thermal Spray Cermet Coatings} \field{volume}{199} \field{year}{2005} \field{dateera}{ce} \field{pages}{7\bibrangedash 21} \range{pages}{15} \verb{doi} \verb 10.1016/j.surfcoat.2005.03.026 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/ANZKIL7N/stoica2005.pdf.pdf \endverb \verb{urlraw} \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844464044&doi=10.1016%2fj.surfcoat.2005.03.026&partnerID=40&md5=6ad736723e828d39edf4a37c5975d2dc \endverb \verb{url} \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844464044&doi=10.1016%2fj.surfcoat.2005.03.026&partnerID=40&md5=6ad736723e828d39edf4a37c5975d2dc \endverb \keyw{Bonding,Brittleness,Cermets,Coating microstructure,Frequencies,Functionally graded materials,heat treatment,Heat treatment,Heat-treated coatings,Heat-treatment,High Velocity Oxy-Fuel,Mechanical properties,Microstructure,Nickel compounds,Phase composition,sliding wear,Sliding wear,Sprayed coatings,Thermal spray coatings,Tribology,Tungsten compounds,Wear of materials} \endentry \entry{szalaEffectNitrogenIon2021}{article}{}{} \name{author}{6}{}{% {{hash=4a9ee02f32549c4bddb8fc6a867aa002}{% family={Szala}, familyi={S\bibinitperiod}, given={Mirosław}, giveni={M\bibinitperiod}}}% {{hash=1edec7143f23a676bc1d1e421ad371f4}{% family={Chocyk}, familyi={C\bibinitperiod}, given={Dariusz}, giveni={D\bibinitperiod}}}% {{hash=aa03626d8069f0d3c06e12988ee22ebf}{% family={Skic}, familyi={S\bibinitperiod}, given={Anna}, giveni={A\bibinitperiod}}}% {{hash=7a6563a3bd2ab01996bacf0a7cab59f1}{% family={Kamiński}, familyi={K\bibinitperiod}, given={Mariusz}, giveni={M\bibinitperiod}}}% {{hash=9534462fbdf04214465b0a8d53b25754}{% family={Macek}, familyi={M\bibinitperiod}, given={Wojciech}, giveni={W\bibinitperiod}}}% {{hash=4c7b275c1443e007b395c4f51bfaf685}{% family={Turek}, familyi={T\bibinitperiod}, given={Marcin}, giveni={M\bibinitperiod}}}% } \list{publisher}{1}{% {Multidisciplinary Digital Publishing Institute}% } \strng{namehash}{12d3e7eb42b6b04f49866c55c7b662e7} \strng{fullhash}{4be9dacab0a7590ddb9565540860a69c} \strng{fullhashraw}{4be9dacab0a7590ddb9565540860a69c} \strng{bibnamehash}{4be9dacab0a7590ddb9565540860a69c} \strng{authorbibnamehash}{4be9dacab0a7590ddb9565540860a69c} \strng{authornamehash}{12d3e7eb42b6b04f49866c55c7b662e7} \strng{authorfullhash}{4be9dacab0a7590ddb9565540860a69c} \strng{authorfullhashraw}{4be9dacab0a7590ddb9565540860a69c} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5 × 1016 cm−2 and 1 × 1017 cm−2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the ε(hcp) to γ(fcc) structure. Unimplanted stellite ε-rich matrix is less prone to plastic deformation than γ and consequently, increase of γ phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable γ structure formed by ion implantation consumes the cavitation load for work-hardening and γ → ε martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of γ phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials.} \field{issn}{1996-1944} \field{issue}{9} \field{journaltitle}{Materials} \field{langid}{english} \field{month}{1} \field{number}{9} \field{title}{Effect of {{Nitrogen Ion Implantation}} on the {{Cavitation Erosion Resistance}} and {{Cobalt-Based Solid Solution Phase Transformations}} of {{HIPed Stellite}} 6} \field{urlday}{30} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{14} \field{year}{2021} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{2324} \range{pages}{1} \verb{doi} \verb 10.3390/ma14092324 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/3A6XPCRR/Szala et al. - 2021 - Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solu.pdf \endverb \verb{urlraw} \verb https://www.mdpi.com/1996-1944/14/9/2324 \endverb \verb{url} \verb https://www.mdpi.com/1996-1944/14/9/2324 \endverb \keyw{AISI-304 stainless steel,Atomic force microscopy,Carbides,Cavitation,cavitation erosion,Cavitation erosion,Cavitation erosion resistance,Chromium compounds,cobalt alloy,Cobalt alloy,Cobalt alloys,Cracks propagation,damage mechanism,Damage mechanism,Engineering materials,Erosion,failure analysis,Failure analysis,ion implantation,Ion implantation,Ions,Linear transformations,Martensitic transformations,Mean depth of erosions,Metastable structures,Nitrogen,Nitrogen ion implantations,Phase transformation,phase transformation.,Plastic deformation,Stellite,stellite 6,Stellite 6,Strain hardening,Surface profilometers,wear,Wear,X ray diffraction} \endentry \entry{rosalbinoCorrosionBehaviourAssessment2013}{article}{}{} \name{author}{2}{}{% {{hash=e8131d75882c2fa7a8421f90ce25d1c8}{% family={Rosalbino}, familyi={R\bibinitperiod}, given={F.}, giveni={F\bibinitperiod}}}% {{hash=926282030f8047fd2d43a9df86389c42}{% family={Scavino}, familyi={S\bibinitperiod}, given={G.}, giveni={G\bibinitperiod}}}% } \strng{namehash}{36d2582fd30d252f704f9311c20257b1} \strng{fullhash}{36d2582fd30d252f704f9311c20257b1} \strng{fullhashraw}{36d2582fd30d252f704f9311c20257b1} \strng{bibnamehash}{36d2582fd30d252f704f9311c20257b1} \strng{authorbibnamehash}{36d2582fd30d252f704f9311c20257b1} \strng{authornamehash}{36d2582fd30d252f704f9311c20257b1} \strng{authorfullhash}{36d2582fd30d252f704f9311c20257b1} \strng{authorfullhashraw}{36d2582fd30d252f704f9311c20257b1} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Cobalt-base (Stellite) alloys have seen extensive use in wear environments mainly due to their high strength, corrosion resistance and hardness. Co-base superalloys rely primarily on carbides formed in the Co matrix and at grain boundaries, for their strength and wear resistance. The distribution, size and shape of carbides depend on processing conditions. Currently, the use of Stellite alloys has extended into various industrial sectors (e.g. pulp and paper processing, oil and gas processing, pharmaceuticals, chemical processing) and the need for improved information regarding corrosion of Stellite alloys has increased. It has been recognized that processing changes, which affect the microstructure of Stellite alloys, most affect corrosion resistance. In this work the corrosion behaviour of Stellite 6 alloy in the as-cast and the HIPed consolidated forms is compared and contrasted using DC and AC electrochemical techniques in static saline conditions. The results show that there is a significant difference in the corrosion performance of HIP consolidated Stellite 6 and it is possible to link the corrosion behaviour to the microstructure. The benefits of using HIPing as a manufacturing process for the corrosion performance of Stellite 6 are discussed.} \field{annotation}{42 citations (Semantic Scholar/DOI) [2025-04-15]} \field{day}{30} \field{issn}{0013-4686} \field{journaltitle}{Electrochimica Acta} \field{month}{11} \field{shortjournal}{Electrochimica Acta} \field{title}{Corrosion Behaviour Assessment of Cast and {{HIPed Stellite}} 6 Alloy in a Chloride-Containing Environment} \field{urlday}{15} \field{urlmonth}{4} \field{urlyear}{2025} \field{volume}{111} \field{year}{2013} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{656\bibrangedash 662} \range{pages}{7} \verb{doi} \verb 10.1016/j.electacta.2013.08.019 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/2DRD9XNN/Rosalbino and Scavino - 2013 - Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environme.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/L9KT464K/Rosalbino and Scavino - 2013 - Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environme.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/Q5R7IBUD/Rosalbino and Scavino - 2013 - Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environme.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/QS8M9ND2/Rosalbino and Scavino - 2013 - Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environme.pdf;/home/grokkingstuff/Sync/Zotero/Zotero/storage/DS9UW8EM/S0013468613015338.html;/home/grokkingstuff/Sync/Zotero/Zotero/storage/PHWTJ7LD/S0013468613015338.html \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/S0013468613015338 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/S0013468613015338 \endverb \keyw{Corrosion behaviour,Electrochemical impedance spectroscopy (EIS),Passive film,Sodium chloride solution,Stellite 6 alloy} \endentry \entry{ogunlakinMicrostructuralElectrochemicalCorrosion2025}{article}{}{} \name{author}{7}{}{% {{hash=d33b8d751752a2580e69701d3d8c1482}{% family={Ogunlakin}, familyi={O\bibinitperiod}, given={Nasirudeen}, giveni={N\bibinitperiod}}}% {{hash=4cd0cba8d86dc89c84ea105e588d87d0}{% family={Hakeem}, familyi={H\bibinitperiod}, given={Abbas\bibnamedelima Saeed}, giveni={A\bibinitperiod\bibinitdelim S\bibinitperiod}}}% {{hash=958f67aa840aac7d055ae4cbb015ed04}{% family={Sohail}, familyi={S\bibinitperiod}, given={Syed\bibnamedelima Hussain}, giveni={S\bibinitperiod\bibinitdelim H\bibinitperiod}}}% {{hash=cdbbb6986e5df549d84a30ffc396a7c4}{% family={Ahmed}, familyi={A\bibinitperiod}, given={Bilal\bibnamedelima Anjum}, giveni={B\bibinitperiod\bibinitdelim A\bibinitperiod}}}% {{hash=a666ba25f69b6443152ddc32870f1cbf}{% family={Ehsan}, familyi={E\bibinitperiod}, given={Muhammad\bibnamedelima Ali}, giveni={M\bibinitperiod\bibinitdelim A\bibinitperiod}}}% {{hash=39e27280e32a4f24c9b7436542ed6bb0}{% family={Ankah}, familyi={A\bibinitperiod}, given={Nestor}, giveni={N\bibinitperiod}}}% {{hash=fe0c1dda6a05683ece46e10288dd9042}{% family={Ali}, familyi={A\bibinitperiod}, given={Sameer}, giveni={S\bibinitperiod}}}% } \strng{namehash}{aec20708c330c1275fb7cf3257d9e5cd} \strng{fullhash}{655e5b5cc8c73046c2700579a8f97260} \strng{fullhashraw}{655e5b5cc8c73046c2700579a8f97260} \strng{bibnamehash}{655e5b5cc8c73046c2700579a8f97260} \strng{authorbibnamehash}{655e5b5cc8c73046c2700579a8f97260} \strng{authornamehash}{aec20708c330c1275fb7cf3257d9e5cd} \strng{authorfullhash}{655e5b5cc8c73046c2700579a8f97260} \strng{authorfullhashraw}{655e5b5cc8c73046c2700579a8f97260} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{A novel 50\% Inconel–50\% cobalt (50 IN–50 Co) superalloy composite was developed via an advanced powder metallurgy spark plasma sintering (SPS) technique. The microstructural characteristics and electrochemical corrosion behavior of the composite were extensively studied to reveal its potential for industrial applications that demand excellent corrosion resistance properties. Field emissions scanning electron microscopy (FESEM) revealed a homogeneous distribution of IN718 and Co212 alloys within each other, with good interfacial integrity free of secondary phases, reaction products, or voids. X-ray diffraction (XRD) analysis revealed characteristic peaks corresponding to the pure IN718 and Co212 alloys, respectively, affirming successful composite formation without any secondary phases. Electrochemical corrosion tests, including open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and cyclic potentiodynamic polarization (CPDP), were conducted to assess the alloy’s corrosion resistance. Results demonstrated that the 50 IN–50 Co composite exhibited a substantial enhancement in corrosion resistance, with a charge transfer resistance (Rct) approximately 378\% higher than pure IN718 and 123\% higher than Co212, along with a polarization resistance (Rp) approximately 36\% higher than both IN718 and Co212. The composite’s superior corrosion resistance is attributed to an effective passive film formation and enhanced charge transfer resistance. LPR measurements corroborated these findings, with the alloy demonstrating the lowest corrosion current density and the highest polarization resistance. CPDP curves indicated a lower current density and a more comprehensive passivation potential range, suggesting effective surface passivation and reduced pitting susceptibility. These findings highlight the promising potential of the superalloy composite for diverse industrial applications in harsh and corrosive environments. This detailed characterization offers crucial insights for newly developed alloys with customized corrosion resistance, which is essential for use in challenging industrial and engineering environments.} \field{day}{6} \field{issn}{1544-1024} \field{journaltitle}{Journal of Materials Engineering and Performance} \field{langid}{english} \field{month}{3} \field{shortjournal}{J. of Materi Eng and Perform} \field{title}{Microstructural and {{Electrochemical Corrosion Characterization}} of a {{Novel}} 50 {{IN}}–50 {{Co Super Alloy Composite}} in 3.5wt.\% {{NaCl Solution}}} \field{urlday}{27} \field{urlmonth}{5} \field{urlyear}{2025} \field{year}{2025} \field{dateera}{ce} \field{urldateera}{ce} \verb{doi} \verb 10.1007/s11665-025-10951-x \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/X3PSR8YZ/Ogunlakin et al. - 2025 - Microstructural and Electrochemical Corrosion Characterization of a Novel 50 IN–50 Co Super Alloy Co.pdf \endverb \verb{urlraw} \verb https://doi.org/10.1007/s11665-025-10951-x \endverb \verb{url} \verb https://doi.org/10.1007/s11665-025-10951-x \endverb \keyw{Co212 superalloy,Coatings,Composites,Corrosion,Corrosion resistance,Electrochemistry,IN718 superalloy,Materials Engineering,Metals and Alloys,Structural Materials} \endentry \entry{karimiPhenomenologicalModelCavitation1987}{article}{}{} \name{author}{2}{}{% {{hash=d2f38d4283232074b004c7430582b5ce}{% family={Karimi}, familyi={K\bibinitperiod}, given={A.}, giveni={A\bibinitperiod}}}% {{hash=4963ffa2ffe6b5d9aab04444dc44c98f}{% family={Leo}, familyi={L\bibinitperiod}, given={W.\bibnamedelimi R.}, giveni={W\bibinitperiod\bibinitdelim R\bibinitperiod}}}% } \strng{namehash}{a489bbb1a7549cce7109db563e464a80} \strng{fullhash}{a489bbb1a7549cce7109db563e464a80} \strng{fullhashraw}{a489bbb1a7549cce7109db563e464a80} \strng{bibnamehash}{a489bbb1a7549cce7109db563e464a80} \strng{authorbibnamehash}{a489bbb1a7549cce7109db563e464a80} \strng{authornamehash}{a489bbb1a7549cce7109db563e464a80} \strng{authorfullhash}{a489bbb1a7549cce7109db563e464a80} \strng{authorfullhashraw}{a489bbb1a7549cce7109db563e464a80} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{A mathematical model incorporating the erosion process and the internal hardening mechanism is proposed to determine the cavitation erosion rate of alloys. It takes into account both the properties of the material being eroded and the cavitation flow conditions. This calculation approach assumes that during erosion the material is subjected to stress pulse loading conditions. The spatial and the temporal distributions of these pulses are statistical, but the mean level of their amplitude is controlled by the flow conditions. The mechanical properties of the materials (such as the elastic limit and the rupture limit) and the metallurgical parameters (such as the work-hardening coefficient and the stacking fault energy) are introduced into the erosion rate equation. This model can be applied to all types of cavitation in various hydraulic machines. It can also be extended to erosion by liquid drop impacts and to solid particle impact erosion. At this stage of development, only the mechanical aspect of erosion is considered and the effects of coroosion on the erosion rate are not included.} \field{annotation}{16 citations (Semantic Scholar/DOI) [2025-04-15]\\ 51 citations (Semantic Scholar/DOI) [2025-04-12]} \field{day}{1} \field{issn}{0025-5416} \field{journaltitle}{Materials Science and Engineering} \field{month}{11} \field{shortjournal}{Materials Science and Engineering} \field{title}{Phenomenological Model for Cavitation Erosion Rate Computation} \field{urlday}{1} \field{urlmonth}{8} \field{urlyear}{2024} \field{volume}{95} \field{year}{1987} \field{dateera}{ce} \field{urldateera}{ce} \field{pages}{1\bibrangedash 14} \range{pages}{14} \verb{doi} \verb 10.1016/0025-5416(87)90493-9 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/JUWU2WVV/Karimi and Leo - 1987 - Phenomenological model for cavitation erosion rate computation.pdf \endverb \verb{urlraw} \verb https://www.sciencedirect.com/science/article/pii/0025541687904939 \endverb \verb{url} \verb https://www.sciencedirect.com/science/article/pii/0025541687904939 \endverb \endentry \entry{francIncubationTimeCavitation2009}{article}{}{} \name{author}{1}{}{% {{hash=82466166f53e07ad9568dba9555563e7}{% family={Franc}, familyi={F\bibinitperiod}, given={Jean-Pierre}, giveni={J\bibinithyphendelim P\bibinitperiod}}}% } \list{publisher}{1}{% {ASME International}% } \strng{namehash}{82466166f53e07ad9568dba9555563e7} \strng{fullhash}{82466166f53e07ad9568dba9555563e7} \strng{fullhashraw}{82466166f53e07ad9568dba9555563e7} \strng{bibnamehash}{82466166f53e07ad9568dba9555563e7} \strng{authorbibnamehash}{82466166f53e07ad9568dba9555563e7} \strng{authornamehash}{82466166f53e07ad9568dba9555563e7} \strng{authorfullhash}{82466166f53e07ad9568dba9555563e7} \strng{authorfullhashraw}{82466166f53e07ad9568dba9555563e7} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{A phenomenological analysis of the cavitation erosion process of ductile materials is proposed. On the material side, the main parameters are the thickness of the hardened layer together with the conventional yield strength and ultimate strength. On the fluid side, the erosive potential of the cavitating flow is described in a simplified way using three integral parameters: rate, mean amplitude, and mean size of hydrodynamic impact loads. Explicit equations are derived for the computation of the incubation time and the steady-state erosion rate. They point out two characteristic scales. The time scale, which is relevant to the erosion phenomenon, is the covering time—the time necessary for the impacts to cover the material surface—whereas the pertinent length scale for ductile materials is the thickness of the hardened layer. The incubation time is proportional to the covering time with a multiplicative factor, which strongly depends on flow aggressiveness in terms of the mean amplitude of impact loads. As for the erosion rate under steady-state conditions, it is scaled by the ratio of the thickness of hardened layers to the covering time with an additional dependence on flow aggressiveness, too. The approach is supported by erosion tests conducted in a cavitation tunnel at a velocity of 65 m/s on stainless steel 316 L. Flow aggressiveness is inferred from pitting tests. The same model of material response that was used for mass loss prediction is applied to derive the original hydrodynamic impact loads due to bubble collapses from the geometric features of the pits. Long duration tests are performed in order to determine experimentally the incubation time and the mean depth of penetration rate and to validate the theoretical approach.} \field{day}{1} \field{issn}{0098-2202, 1528-901X} \field{journaltitle}{Journal of Fluids Engineering} \field{langid}{english} \field{month}{2} \field{number}{2} \field{title}{Incubation {{Time}} and {{Cavitation Erosion Rate}} of {{Work-Hardening Materials}}} \field{urlday}{22} \field{urlmonth}{5} \field{urlyear}{2025} \field{volume}{131} \field{year}{2009} \field{dateera}{ce} \field{urldateera}{ce} \verb{doi} \verb 10.1115/1.3063646 \endverb \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/3IJ369FQ/Franc - 2009 - Incubation Time and Cavitation Erosion Rate of Work-Hardening Materials.pdf \endverb \verb{urlraw} \verb https://asmedigitalcollection.asme.org/fluidsengineering/article/doi/10.1115/1.3063646/466754/Incubation-Time-and-Cavitation-Erosion-Rate-of \endverb \verb{url} \verb https://asmedigitalcollection.asme.org/fluidsengineering/article/doi/10.1115/1.3063646/466754/Incubation-Time-and-Cavitation-Erosion-Rate-of \endverb \endentry \entry{thiruvengadamTheoryErosion1967}{article}{}{} \name{author}{1}{}{% {{hash=d3cae98a50611da092efbc498a5a497c}{% family={Thiruvengadam}, familyi={T\bibinitperiod}, given={Alagu}, giveni={A\bibinitperiod}}}% } \strng{namehash}{d3cae98a50611da092efbc498a5a497c} \strng{fullhash}{d3cae98a50611da092efbc498a5a497c} \strng{fullhashraw}{d3cae98a50611da092efbc498a5a497c} \strng{bibnamehash}{d3cae98a50611da092efbc498a5a497c} \strng{authorbibnamehash}{d3cae98a50611da092efbc498a5a497c} \strng{authornamehash}{d3cae98a50611da092efbc498a5a497c} \strng{authorfullhash}{d3cae98a50611da092efbc498a5a497c} \strng{authorfullhashraw}{d3cae98a50611da092efbc498a5a497c} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{An elementary theory of erosion is derived based on the assumptions of 'accumulation' and 'attenuation' of the energies of impact causing erosion. This theory quantitatively predicts the relative intensity of erosion as a function of relative time and this prediction is in fair agreement with experimental observations. Since the intensity of collision, the distance of shock transmission and the material failure are all statistical events, a generalization of the elementary theory is suggested. Some of the practical results of this theory are the predictions of the cumulative depth of erosion, the determination of erosion strength and the method of correlation with other parameters such as liquid properties and hydrodynamic factors. Modifications of this theory for brittle and viscoelastic materials are also suggested. (Author)} \field{day}{1} \field{journaltitle}{Proc. 2nd Meersburg Conf. on Rain Erosion and Allied Phenomena} \field{month}{3} \field{shortjournal}{Proc. 2nd Meersburg Conf. on Rain Erosion and Allied Phenomena} \field{title}{Theory of Erosion} \field{volume}{2} \field{year}{1967} \field{dateera}{ce} \field{pages}{53} \range{pages}{1} \verb{file} \verb /home/grokkingstuff/Sync/Zotero/Zotero/storage/Z55KHM9F/Thiruvengadam - 1967 - Theory of erosion.pdf \endverb \endentry \enddatalist \missing{Ciubotariu2016154} \missing{Ciubotariu201698} \missing{DUBOS2020128812} \missing{Depczynski20131045} \missing{Ding200866} \missing{Ding201797} \missing{E201890} \missing{E2019246} \missing{Feng2006558} \missing{Guo2016123} \missing{HUANG2023106170} \missing{Hattor2014257} \missing{Hattori20091954} \missing{Hou2020} \missing{Kovalenko2019175} \missing{LIU2022294} \missing{Lavigne2022} \missing{Lei20119} \missing{Liu2019} \missing{Liu2022} \missing{Lizarraga2017} \missing{Mitelea2022967} \missing{Mutascu2019776} \missing{Qin2011209} \missing{Rajan19821161} \missing{Romero2019518} \missing{Romero2019581} \missing{Romo201216} \missing{Singh2012498} \missing{Singh201487} \missing{Sun2021} \missing{Szala2021} \missing{Szala2022741} \missing{Tawancy1986337} \missing{Vacchieri20171100} \missing{Wang2023} \missing{Zhang20191060} \missing{Zhang2021} \missing{ahmedMappingMechanicalProperties2023} \missing{berchicheCavitationErosionModel2002} \missing{berchicheCavitationErosionModela} \missing{boeckRelationshipsProcessingMicrostructure1985} \missing{davis2000nickel} \missing{ishidaIntermetallicCompoundsCobase2008} \missing{nairExceptionallyHighCavitation2018a} \endrefsection \endinput