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Abstract

Cavitation erosion is a complex phenomenon influenced by the strength properties
of cavitating bubbles and material resistance, leading to performance degradation
through material loss. This research endeavors to evaluate the resistance of blended
stellite alloys to cavitation erosion. Simulation of cavitation phenomena will be
achieved using ultrasonic vibrating probes positioned consistently from the mate-
rial. The study will investigate the synergistic interplay between cavitation and
corrosion erosion through in-situ electrochemical measurements. Experimental pro-
cedures will involve an ultrasonic vibratory horn operating at a fixed frequency of 20
kHz, with adjustable peak-to-peak amplitude. Microstructural characterization of
cavitated sample surfaces and underlying cross-sections affected by cavitation will
be conducted using scanning electron microscopy.
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Chapter 1

Introduction

Cavitation erosion occurs when vapor bubbles form and collapse within a fluid due

to pressure reaching the vapor pressure threshold [1–3]. The implosion emits heat

[4], shockwaves [5], and microjets [6] that damage adjacent solid surfaces, leading

to material removal due to cumulative cavitation events [7, 8]. The resulting stress

levels, as seen in Figure 1, can exceed material thresholds, causing surface damage

and system degradation [9]. Understanding material response to cavitation stresses

is crucial for selecting resistant materials and minimizing maintenance costs.

Stellites are cobalt-chromium alloys that are typically used for surfaces in lubrication-

starved, high temperature or corrosive environments [10–14], such as in the nuclear

industry [15–17], oil & gas [18, 19], marine [20], power generation [21], and aerospace

industries [22]. The wear resistance of different stellite alloys manufactured by cast-

ing, forging, laser cladding, and hot isostatic pressing (HIP) has been investigated

extensively, [12, 13, 23–31].

The cavitation erosion of stellites has been investigated in experimental studies [21,

32–50], along with investigations into cobalt-based alloys [51–61].

Ahmed et al. investigate the impact of HIP’ing on stellite alloys, finding superior

impact and fatigue resistance compared to cast alloys [Ahmedd2021, 63–67]. They

also explored blended alloys formed by consolidating two stellite powders, resulting

in unique microstructures influenced by the different diffusion rates of added ele-
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Chapter 1: Introduction

Figure 1.1: Damage mechanism of cavitation

ments. Depending on the composition of the stellite powders used, the blended

alloys could possess uniform microstructure or regions that are similar to the con-

stituent powders [11, 62]. This is due to the different diffusion rates of the added

elements - carbon diffuses through the blended alloys while tungsten cannot diffuse

due to its high atomic radius [11, 62].

Given the detrimental influence of voids and defects on cavitation erosion, the lack

of academic investigation into cavitation erosion on HIP (Hot Isostatic Pressing)

stellite alloys, underscores the need for further exploration. Moreover, the com-

plexity introduced by blended stellite alloys in the context of cavitation erosion in

corrosive environments adds another layer of intrigue to this research endeavor. By

analyzing the interactions between alloy composition, microstructure, and cavitation

erosion behavior, this thesis aims to fill a critical gap in the current understanding

of material performance under cavitation erosion conditions.
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Chapter 1: Introduction

1.1 Aims and Objectives

Cavitation erosion impacts various industrial components, lowering their service

life and increasing overall costs. In order to minimize damage & losses due to

cavitation, the mechanisms by which materials undergo cavitation erosion need to be

understood. This work aims at identifying the most relevant factors to the cavitation

erosion of base and blended stellite alloys, with a focus on how composition and

microstructure affect cavitation resistance. The objectives of this work are to:

1. Design and develop an experimental rig capable of accurately simulating

cavitation erosion conditions in distilled water & artificial seawater and achiev-

ing measurable & replicable erosion rates, by end of May.

2. Quantify cavitation erosion resistance of stellite materials in distilled water

and artificial seawater by end of June

3. Investigate the morphology, microstructure, chemical composition, and sur-

face characteristics of eroded stellite samples by end of July.

(a) AcquireOptical Microscopy images of eroded stellite samples at different

stages of testing, in order to track changes of overall morphology of eroded

surface.

(b) Acquire Scanning Electron Microscopy (SEM) images of eroded stellite

samples to analyze the microstructural changes and phase composition

resulting from cavitation erosion

(c) Acquire Energy Dispersive X-ray Spectrometry (EDS) images and scans

to analyze the elemental composition of specific regions on the eroded stel-

lite samples (elemental composition of matrix, carbides, and interfaces)

4. Develop mathematical models for cavitation erosion of stellite alloys by end

of July

(a) Investigate the relationship between composition and previously re-

ported structure-property relationships to cavitation erosion rates.
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Chapter 1: Introduction

(b) Assess the applicability of parameter-models of cavitation erosion to

experimental data of the cumulative mass loss of stellites.

5. Understand the cavitation mechanism in stellite alloys and describe a phe-

nomological model of CE in stellite alloys and provide actionable recommen-

dations for enhancing cavitation resistance in stellite alloys

Finite element simulations (FEA) and other numerical simulation techniques are

outside the the scope of this thesis.

4
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1.2 Resources

The designed rig will require the use of the following equipment

� Q500 Sonicator (existing)

� Vacuum Pump and Dessicator (purchased)

� Chilled Water Supply (existing)

� Coiled heat exchanger (purchased)

� Air Compressor (existing)

This work will require access to the following university laboratories.

� Energy Laboratory

Location of relevant existing equipment (sonotrode, microscope, precision bal-

ance). There are two computers in the Energy Lab, the first to control the

microscope and to handle image processing through ImageJ, and second for

general purpose computing. The second computer has an automated backup,

in addition to version control on all data stored.

� Chemical Laboratory

Acetone is stored in Flammable Liquid Storage Cabinet in Chemical Lab, with

purchase of more acetone available through vendors registered with Procure-

ment. Distilled water is provided by Type 1 water purification system in the

Chemical Laboratory.

� Fabrication & Automotive Laboratory

Access to tools for modification of equipment.

� Electronics Laboratory

Access to soldering equipment for work on unpowered equipment.

In addition to the above, the following items are required:

� Specimens of Blended Stellite Alloys Samples are provided by Dr Rehan Ahmed.

� Material characterization equipment Access to SEM, EDS, and XRD facilities

through an MoU w/ University of Sharjah,
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Chapter 1: Introduction

1.3 Risks

The primary concern for this project revolves around time constraints and potential

delays that were not adequately accounted for during the initial project planning

phase.

1.3.1 Experimental setup complexity risks

Experimental setup could pose unexpected issues due to lack of planning. In order

to mitigate the risk of unexpected design changes, the following strategies are to be

employed

� Detailed Planning and Design in CAD

The rig is to be designed in CAD to ensure all subsystems meet spatial, power,

and I/O requirements.

� Expert Consultation & Review

The rig design is to be reviewed by supervisor and other expereinced re-

searchers & engineers. Feedback is to be recorded and designed altered to

alleviate concerns. Identified people for review are Dr Rehan Ahmed, Dr Mo-

hammed Al-Musleh, Muhsin Aykapaddatu

� Functionality/performance is not as expected or to specification

Pilot testing of the rig to ASTM G32 standards using known materials (e.g.,

316L stainless steel) will verify functionality and performance, comparing re-

sults with existing data.

� Documenting Procedures and Troubleshooting Protocols

Detailed documentation of components and development of a Standard Oper-

ating Procedure (SOP) aligned with ASTM G32 standards will be maintained.

Troubleshooting protocols will be established for unforeseen issues.

� Modular Design & Redundancies

The rig will feature a modular design for easy component adjustment. Spare

parts will be readily available for quick replacement or repair, minimizing

downtime.
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1.3.2 Health & Safety risks

� Noise exposure

The sonotrode emits high frequency noise that is

� Chemical Hazards

1.4 Beneficiaries & Stakeholders

Industry stakeholders, including manufacturers and technology providers, are likely

to benefit from improved understanding of cavitation erosion in stellite alloys, en-

abling the development of more durable materials for applications in harsh environ-

ments, such as hydroelectric power plants [47], Francis turbines [68], nuclear power

plant valves [17, 69], condensate and boiler feedwater pumps [70], marine propellers

[71], liquid-lubricated journal bearings [72], pipline reducers [73–75].

The project supervisor and academic faculty represent the primary stakeholders,

whose critique will be necessary for attaining project & academic objectives. Apart

from serving as mentor, the project supervisor has provided rare specimens and

leveraged inter-university connections to access material characterization facilities,

enhancing the project’s resources and capabilities. Other stakeholders are:

� Peer Researchers: offer peer review and collaboration, in addition to being

users of similar equipment. Undergraduate students are unlikely to be present

during project duration, although they are likely to be end users of equipment

after project close.

� Research Community contribute to understanding of cavitation erosion and

benefit from data : Project outcomes generate data and contribute to under-

standing of cavitation erosion. Researchers and industrial partners

� Lab Manager: In addition to ensuring compliance with health and safety re-

quirements, the lab manager is a doctoral student working on their research

rig; their advice will be helpful.
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Chapter 2

Literature Review

Cavitation erosion is a complex phenomenon that results from hydrodynamic ele-

ments and material characteristics [7]. When components are exposed to sustained

cavitation erosion, the component surface is degraded and material is progressively

lost.

From a hydrodynamic standpoint, cavitation erosion results from the formation of

and subsequent collapse of vapor bubbles within a fluid medium, due to the local

pressure reaching the saturated vapor pressure (due to pressure decrease (cavita-

tion) or temperature increase (boiling)). When these bubbles implode, they emit

heat, shockwaves, and high-speed microjets that can impact adjacent solid surfaces,

leading to damage to the surface and removal of material due to the accumulation of

damage following numerous cavitation events [76–78]. The required pressure drop

required by cavitation could be provided by the propagation of ultrasonic acoustic

waves and hydrodynamic pressure drops, such as constrictions or the rotational dy-

namics of turbomachinery [79]. Impurities in the fluid, such as solid particles and

nanobubbles with a radius of 500nm can significantly reduce the cavitation thresh-

old leading to increased cavitation intensity [80]. When these bubbles collapse near

walls, the concentration of energy on very small areas of the wall result in high stress

levels on the wall [81].

The resultant stress levels, which range from 100 - 1000 MPa, can surpass material
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Chapter 2: Literature Review

resistance thresholds, including yield strength, ultimate strength, or fatigue limit,

leading to material removal from the surface and subsequent degradation of indus-

trial systems [76–78]. The high strain rate in cavitation erosion makes it rather

comparable to explosions or projectile impacts, albeit with very limited volume of

deformation and repeated impact loads [82–87]. The plastic deformation results in

progressive hardening, crack propagation, and local fracture and removal of mate-

rial, with the damage being a function of intensity and frequency of vapor bubble

collapse [88–90]. The selection of more resistent materials requires investigation of

material response to cavitation stresses, with the mechanism of erosion being of par-

ticular interest [91–93]. The resulting reduction of performance & service life and

the increased maintenance and repair costs motivate research into understanding

how materials respond to the impact of a cavitating material.

2.1 Measuring cavitation erosion through ASTM

G32

The ASTM G32 standard defines the study of cavitation performance of materials by

placing an ultrasonic sonotrode above a stationary specimen, forming a thin liquid

layer between the two solid walls, as seen in Figure 2.1. The sonotrode horn emits

an acoustic wave into the fluid and causes cavitation when the pressure amplitude

is sufficiently high. Due to the reflection and superposition of ultrasound in the thin

liquid layer, the intensity of cavitating bubbles is increased, leading to accelerated

cavitation erosion [80, 94, 95].

2.1.1 Effect of distance between sonotrode and specimen

Endo et al [96] found that the extent of damage depends upon the thickness of the

thin liquid layer, Kikuchi et al [97] find that the extent of damage is a function of the

reciprocal of the thickness of the liquid layer. For thicknesses h < 0.5mm, numerous

bubbles coalese into several large bubble clusters in contact with the horn tip and

the staionary specimen, while for thicknesses h > 0.5mm, the numerous bubbles

9



Chapter 2: Literature Review

Figure 2.1: Important parameters of experimental apparatus from ASTM G32.
From [94]

produced are isolated [98–100].

2.1.2 Effect of liquid temperature

The test water temperature affects the degree of cavitation erosion [101, 102], with

mass loss rate initially increasing with increase in temperature, peaking at an opti-

mum temperature Tm, then decreasing with further increase in temperature [103],

with bulk liquid temperatures above 50 C not altering erosion rate significantly [101,

104]. However, it must be noted that the temperature of the liquid film between the

ultrasonic tip and sample rises rapidly, regardless of the bulk liquid temperature [96,

99], with maximum erosion rates observed with film temperatures at temperatures

30-35 C [101, 105].
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2.2 Stellite

Stellite alloys belong to the cobalt-chromium family, with the addition of tungsten or

molybdenum as the main alloying elements. The matrix in stellite alloys consist of

cobalt (Co) with solid-solution strengthening of a substantial amount of chromium

(Cr) and tungsten(W)/moblybdenum(Mo), resulting in high hardness & strength

at high temperature, with carbide precipitations (Co, Cr, W, and/or Mo carbides)

adding strength and wear resistance [26, 27, 62, 106–108]. Stellites are typically

used for wear-resistant surfaces in lubrication-starved, high temperature or corrosive

environments [10–14], such as in the nuclear industry [15–17], oil & gas [18, 19],

marine [20], power generation [21], and aerospace industries [22].

The wear resistance of different stellite alloys manufactured by casting, forging, laser

cladding, and hot isostatic pressing (HIP) has been investigated extensively, [12, 13,

23–31]. Hot Isostatic Pressing (HIP) consolidation of Stellite alloys offers significant

technological advantages for components operating in aggressive wear environments

[12, 22, 64, 66]. Yu et al [30, 67] note that HIP consolidation results in superior

impact and fatigue resistance over cast alloys. The cavitation erosion of stellites has

been investigated in experimental studies, as seen in Table 2.1, [21, 32–50], along

with investigations into cobalt-based alloys [51–61]. However the cavitation erosion

mechanism has not been fully established, particularly with the effect of microstruc-

ture due to different fabrication techniques, as seen in Figure 2.2. In addition to the

energy absorbing effect of phase transformation of the cobalt matrix [61], Heath-

cock et al [109] find that finer carbide structure leads to increased cavitation erosion

resistance, an observation ratified by Garzon et al [Garzon2005145]. Cavitation

erosion of stellite coatings is improved in seawater, when compared to distilled water

[52], likely due to the protective effect of chromium oxides inhibiting formation of

erosion pits [53].

Corrosion studies conducted on stellites find high corrosion resistance. The matrix

is preferentially attacked, with the dissolution of Co into Co2+, while a surface layer

comprised of chromium-rich oxides (Cr2O3 & Cr(OH)3) prevents further corrosion
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Figure 2.2: Microstructure of Stellite alloys 1, 12, 6, & 21 due to casting, welding,
and HIP’ing. From [31].

in chloride-rich environments. Zhang et al find that stellite alloys with higher carbon

content have less corrosion resistance [10]. Malayoglu et al find improved erosion

and corrosion resistance of HIP’ed Stellite 6 over cast Stellite 6, due to lessened

removal of Co-rich matrix in HIP’ed material. [110]. Mohamed et al report similar

improved performance of HIP’ed Stellite 6 and attribute it to the fine grain size of

carbides in HIP’ed materials [111].

2.2.1 Matrix phase

Cobalt and Co-Cr alloys undergo thermally induced phase transformation from the

high temperature face-centered cubic (fcc) γ phase to low temperature hexagonal

12



Chapter 2: Literature Review

Table 2.1: Operating parameters used in ASTM G32 tests on Stellite specimens

In
d
ir
e
ct

W
a
te
r HIP’ed Stellite 6 50 - 0.5 1.5 24 2.09 [33]

5× 1016Mn+

cm2 HIP’ed Stellite 6 50 - 0.5 1.5 24 2.07 [33]

10× 1016Mn+

cm2 HIP’ed Stellite 6 50 - 0.5 1.5 24 1.88 [33]

D
ir
e
ct

W
a
te
r LC Stellite 6 50 25 - 1 14 2.7 [36]

SLD Stellite 6 50 25 - 1 14 0.77 [36]
HVOF Stellite 21 25 25 - 0.5 8 - [35]

3
.5

w
t%

N
a
C
l Stellite 728 50 25 - 5 50 1.012 [32]

Stellite 6 50 25 - 5 50 2.841 [32]
Stellite 6B 50 25 - 5 50 2.018 [32]

HVOF Stellite 21 25 25 - 0.5 8 - [35]
LC Stellite 6 50 25 - 1 14 0.044 [38]

SLD-1.0kW Stellite 6 50 25 - 1 14 0.017 [38]
SLD-1.0kW Stellite 6 50 25 - 1 14 0.017 [38]

Peak to Peak Amplitude (µm)
Water Temperature (◦C)
Standoff Distance (mm)
Test Duration (hr)
Total Duration (hr)
Terminal Erosion Rate for Eroded Area 199mm2 (mg h−1)
References

close-packed (hcp) ϵ phase at 700 K and strain induced fcc-hcp transition through

maretensitic-type mechanism (partial movement of dislocations) [32, 112]. At am-

bient conditions, the metastable FCC retained phase in stellites can be transformed

into HCP phase by mechanical loading, although any HCP phase is completely

transformed into a FCC phase between 673 K and 743 K [35, 113]; the metastable

fcc cobalt phase in stellite alloys [36, 114] absorbs a large part of imparted energy

under the mechanical loading of cavitation erosion. The fcc to hcp transition is

related to the very low stacking fault energy of the fcc structure (7 mJ/m2) [33,

115, 116].

Solid-solution strengthening leads to increase of the fcc cobalt matrix strength (due

to distortion of the atomic lattice with the addition of elements of different atomic

radii), and decrease of low stacking fault energy [115] due to the adjusted electronic

structure of the metallic lattice. Dislocation motion in stellites is discouraged by

solute atoms of Mo andW, due to the large atomic sizes. Given that dislocation cross

slip is the main deformation mode in imperfect crystals at elevated temperature, as

13
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dislocation slip is a diffusion process that is enhanced at high temperature, this leads

to high temperature stability [117]. In addition, nickel (Ni), iron (Fe), and carbon

(C) stabilize the fcc structure of cobalt (a = 0.35 nm), while chromium (Cr) and

tungsten (W), stabilize the hcp structure (a = 0.25 nm and c = 0.41 nm) [115, 118].

2.2.2 Carbide phase

The amount and types of carbides dispersed in the stellite matrix are primarily

determined by the carbon content, with higher carbon content encouraging carbides

with higher C/M ratios, while the size of carbides is determined by the cooling rate

[27, 29]. Carbon content can be used to distinguish between different stellite alloys:

high-carbon stellites designed for high wear resistance, abrasion, & severe galling,

medium-carbon (0.5 - 1.6% wt) stellites used for high temperature service, and

low-carbon (¡0.5% wt) stellites used primarily for corrosion resistance, cavitation,

& sliding wear [37, 119]. Low-carbon stellites depend primarily of solid-solution

strengthening for their mechanical properties. As the carbon content increases, the

W/Mo content is usually also increased to prevent depletion of Cr from matrix solid

solution strengthening [10, 111]. Chromium is the predominant carbide former,

with M7C3 and M23C6 phases, in addition to providing corrosion resistance and

strength to the stellite matrix [43–45]. Difference between the M7C3 and M23C6

phases is not readily visible under SEM. In tungsten-containing alloys, carbides of

type M7C3 and M6C are formed in addition to the matrix. Ahmed et al report on

the identification of intermetallic Co3W and Co7W6 phases through XRD, although

these phases are not identified in SEM observations [31, 120, 121].

2.2.3 Blended Stellite Alloys

Ahmed et al investigate the influence of the HIP’ing process on stellites [62–67], and

conclude that HIP consolidation of Stellite alloys offers significant technological ad-

vantages for components operating in aggressive wear environments due to superior

impact and fatigue resistance over cast alloys [12, 22, 64, 66]. In order to achieve

unique microstructures from existing stellite alloys, Ahmed et al investigate the per-
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formance of blended alloys [11, 62], which are formed through the consolidation of

a mixture of two stellite powders.

A blended stellite alloy is formed by hot isostatic pressing of a mixture of two stellite

powders. The powders are created through gas atomization, in which a stream of

liquid stellite alloy is disrupted and atomized into tiny molten droplets by a high-

pressure inert gas flow [11, 62, 122, 123]. The free-falling molten droplets rapidly

solidify into spherical particles before being collected, forming high quality stellite

powders with controllable size. The rapid cooling of the powder during atomization

leads to reduced precipitation of carbides and supersaturation of the metallic matrix

with other elements, as seen in the reduced proportion of carbide phases detected in

the XRD performed on powders, compared to XRD of HIP’d samples. The mixing of

powders is conducted in a powder hopper that ensures uniform distribution of pow-

der mixtures [11, 62]. The HIP treatment was conducted at a temperature of 1200 C

and a pressure of 100 MPa for a duration of 4 hours, resulting in full dense blended

stellite alloys [124–126]. During the HIP’ing process, carbides are precipitated, in

addition to reduction of supersaturation of the matrix [127, 128]. Depending on the

composition of the stellite powders used, the blended alloys could possess uniform

microstructure or regions that are similar to the constituent powders. This is due

to the different diffusion rates of the added elements - carbon diffuses through the

blended alloys while tungsten cannot diffuse due to its high atomic radius [11, 62,

129, 130].

In summary, the literature review underscores the necessity for additional academic

inquiry into the cavitation erosion resistance of HIP’ed stellite alloys, particularly

focusing on the influence of composition on microstructure and cavitation erosion

behavior. This thesis endeavors to address this gap in knowledge by conducting a

comprehensive investigation.

15



Bibliography

[1] R.T. Knapp, J.W. Daily, and F.G. Hammitt. Cavitation. Engineering soci-

eties monographs. McGraw-Hill, 1970. url: https://books.google.ae/

books?id=T-hRAAAAMAAJ.

[2] C.E. Brennen. Cavitation and Bubble Dynamics. Oxford engineering science

series. Oxford University Press, 1995. isbn: 9780195094091. url: https:

//books.google.ae/books?id=vYiUO0RlC4UC.

[3] W. Lauterborn and H. Bolle. “Experimental investigations of cavitation-

bubble collapse in the neighbourhood of a solid boundary”. In: Journal of

Fluid Mechanics 72.2 (1975), pp. 391–399. doi: 10.1017/S0022112075003448.

[4] Edward B. Flint and Kenneth S. Suslick. “The Temperature of Cavitation”.

In: Science 253.5026 (1991), pp. 1397–1399. doi: 10.1126/science.253.

5026 . 1397. eprint: https : / / www . science . org / doi / pdf / 10 . 1126 /

science.253.5026.1397. url: https://www.science.org/doi/abs/

10.1126/science.253.5026.1397.

[5] Siyuan Geng et al. “Propagation of Shock Wave at the Cavitation Bubble

Expansion Stage Induced by a Nanosecond Laser Pulse”. In: Journal of Fluids

Engineering 143.5 (Mar. 2021), p. 051209. issn: 0098-2202. doi: 10.1115/

1.4049933. url: https://doi.org/10.1115/1.4049933.

[6] Jiupeng Xiong et al. “Quantitative evaluation of the microjet velocity and

cavitation erosion on a copper plate produced by a spherical cavity focused

transducer at the high hydrostatic pressure”. In: Ultrasonics Sonochemistry

82 (2022), p. 105899. issn: 1350-4177. doi: https://doi.org/10.1016/j.

16

https://books.google.ae/books?id=T-hRAAAAMAAJ
https://books.google.ae/books?id=T-hRAAAAMAAJ
https://books.google.ae/books?id=vYiUO0RlC4UC
https://books.google.ae/books?id=vYiUO0RlC4UC
https://doi.org/10.1017/S0022112075003448
https://doi.org/10.1126/science.253.5026.1397
https://doi.org/10.1126/science.253.5026.1397
https://www.science.org/doi/pdf/10.1126/science.253.5026.1397
https://www.science.org/doi/pdf/10.1126/science.253.5026.1397
https://www.science.org/doi/abs/10.1126/science.253.5026.1397
https://www.science.org/doi/abs/10.1126/science.253.5026.1397
https://doi.org/10.1115/1.4049933
https://doi.org/10.1115/1.4049933
https://doi.org/10.1115/1.4049933
https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105899
https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105899
https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105899


BIBLIOGRAPHY

ultsonch.2021.105899. url: https://www.sciencedirect.com/science/

article/pii/S1350417721004417.

[7] J.P. Franc and J.M. Michel. In: Fundamentals of Cavitation (2004). cited By

959, p. 265.

[8] A Karimi and JL Martin. “Cavitation erosion of materials”. In: International

Metals Reviews 31.1 (1986), pp. 1–26.

[9] F. Pereira, F. Avellan, and Ph. Dupont. “Prediction of Cavitation Erosion:

An Energy Approach”. In: Journal of Fluids Engineering 120.4 (Dec. 1998),

pp. 719–727. issn: 0098-2202. doi: 10.1115/1.2820729. url: https://doi.

org/10.1115/1.2820729.

[10] X.Z. Zhang et al. “Electrochemical Study of Corrosion Behavior of Wrought

Stellite Alloys in Sodium Chloride and Green Death Solutions”. In: Journal of

Materials Engineering and Performance 24.9 (2015). Cited by: 6, pp. 3579–

3587. doi: 10.1007/s11665-015-1629-4.

[11] R. Ahmed, A. Fardan, and S. Davies. “Mapping the mechanical properties

of cobalt-based stellite alloys manufactured via blending”. In: Advances in

Materials and Processing Technologies (2023). Cited by: 0; All Open Access,

Green Open Access, Hybrid Gold Open Access. doi: 10.1080/2374068X.

2023.2220242.

[12] R. Ahmed et al. “Influence of Re-HIPing on the structure-property relation-

ships of cobalt-based alloys”. In: Tribology International 57 (2013). Cited by:

33, pp. 8–21. doi: 10.1016/j.triboint.2012.06.025.

[13] A. Frenk and W. Kurz. “Microstructural effects on the sliding wear resistance

of a cobalt-based alloy”. In: Wear 174.1-2 (1994). cited By 126, pp. 81–91.

doi: 10.1016/0043-1648(94)90089-2.

[14] J.-H. Song and H.-J. Kim. “Sliding wear performance of cobalt-based alloys in

molten-Al-added zinc bath”. In: Wear 210.1-2 (1997). cited By 30, pp. 291–

298. doi: 10.1016/S0043-1648(97)00092-6.

[15] N.S. McIntyre, D. Zetaruk, and E.V. Murphy. “X-Ray photoelectron spec-

troscopic study of the aqueous oxidation of stellite-6 alloy”. In: Surface and

17

https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105899
https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105899
https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105899
https://doi.org/https://doi.org/10.1016/j.ultsonch.2021.105899
https://www.sciencedirect.com/science/article/pii/S1350417721004417
https://www.sciencedirect.com/science/article/pii/S1350417721004417
https://doi.org/10.1115/1.2820729
https://doi.org/10.1115/1.2820729
https://doi.org/10.1115/1.2820729
https://doi.org/10.1007/s11665-015-1629-4
https://doi.org/10.1080/2374068X.2023.2220242
https://doi.org/10.1080/2374068X.2023.2220242
https://doi.org/10.1016/j.triboint.2012.06.025
https://doi.org/10.1016/0043-1648(94)90089-2
https://doi.org/10.1016/S0043-1648(97)00092-6


BIBLIOGRAPHY

Interface Analysis 1.4 (1979). Cited by: 28, pp. 105–110. doi: 10.1002/sia.

740010402.

[16] Pengxiang Xu et al. “Optimization of process parameters for laser cladding

Stellite6 cobalt-based alloy”. In:Materials Today Communications 38 (2024).

Cited by: 1. doi: 10.1016/j.mtcomm.2024.108430.

[17] Guiyan Gao, Shusheng Guo, and Derui Li. “A Review of Cavitation Erosion

on Pumps and Valves in Nuclear Power Plants”. In: Materials 17.5 (2024).

Cited by: 0. doi: 10.3390/ma17051007.
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