Scanning Electron Microscopy (SEM) Concepts EDS.WDS (X-ray) ## Voltage: Piece Controls the energy of electrons $V_0 = 30 \text{ kV}$ Chromatic aberrations (E₀ spread from $E_{PEavg} = 30 \text{ keV}$ source) and spherical aberrations (electromagnetic lens imperfections) worsen at low V_0 , causing poorer resolution SE signal per unit current Specimen Surface -SEs Interaction Volume X-rays - Continuum (Background) and Fluorescent X-rays Current: For non-conductive specimens, deeper penetration at high V_o builds charge, decreases image quality; For conductive specimens, smaller λ -- and less severe aberrations -- at high V_{λ} increases resolution. Volume \propto Voltage \propto E_{PEavg} \propto 1/ λ _{PE} Contrast: Elemental Composition Probe Diameter at Focal Plane Tip: Select the smallest current that you need that also gives you WD enough signal for the detector/application that you are using (see table below). For imaging, if contrast is below ~75%, you should consider going to a lower current for better resolution. ## Working Distance (WD): objective lens in focus Surface $\alpha_{p_{(10 mm)}} < \alpha_{p_{(5 mm)}}$ focal plane Long WD increases depth of field. Short WD increases resolution $(\alpha_n = beam convergence angle)$ $\uparrow \alpha_{\scriptscriptstyle D}$ ↓ Depth of Field ↑ Resolution TLD (SE) ETD (SE. Probe Current Probe Diameter Signal ↑ Resolution Characteristic X-ray (0.1 < E < 30 keV, characteristic of electron transition energy) **Detectors:** *Tip: In the absence of a dedicated BSED, switch to a negative bias (e.g. -50 V) on the TLD to reject low energy SEs and operate it as a de facto BSED (works best in Immersion Mode). Also, you can Increase the positive bias of the ETD or TLD to pull in lower energy SEs and thus boost the signal. | Detector | Signal | Recommended Current | Information Detected | |--|--------|----------------------------|------------------------------| | Everhart-Thornley Detector (ETD) ^{1,2,3,4} | SE | 1-200 pA (Spot 1-3) | Surface Topography | | Through-the-Lens Detector (TLD) ^{1,2,3} | SE* | 1-200 pA (Spot 1-3) | Surface Topography | | Backscattered Electron Detector (BSED) ⁴ | BSE | 50 pA - 2 nA (Spot 2-5) | Atomic # (Z) Contrast | | Energy Dispersive Spectroscopy (EDS) ^{2,3} | X-ray | 100 pA - 10 nA (Spot 3-7) | Elemental Composition | | Wavelength Dispersive Spectroscopy (WDS) ² | X-ray | 100 pA - 10 nA (Spot 3-7) | Elemental Composition | Interest line of sight positive bias (+) Matthew Sullivan Hunt, PhD Mounted in: 1 = FEI Nova 600; 2= FEI Nova 200; 3 = FEI Sirion; 4 = FEI Quanta 200 F