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Abstract

The stacking fault energies (SFE) of 10 austenitic steels were determined in the temperature range 50 6 T 6 600 K by thermodynamic
modeling of the Fe–Cr–Ni–Mn–Al–Si–Cu–C–N system using a modified Olson and Cohen modeling approach (Olson GB, Cohen M.
Metall Trans 1976;7A:1897 [1]). The applied model accounts for each element’s contribution to the Gibbs energy, the first-order excess
free energies, magnetic contributions and the effect of interstitial nitrogen. Experimental SFE values from X-ray diffraction measure-
ments were used for comparison. The effect of SFE on deformation mechanisms was also studied by electron backscatter diffraction.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In face-centered cubic (fcc) metals, the stacking fault
energy cSFE is one of the most important parameters deter-
mining which deformation and/or transformation mecha-
nism(s) will occur during plastic straining of the material.
Consequently, the stacking fault energy can affect quite
strongly the mechanical behavior of these materials. At
low cSFE, wide dissociation of dislocations into Shockley
partials can hinder dislocation glide and thus favor mechan-
ical twinning (c! c0T ) or martensitic phase transformations
(cfcc ! eMs

hcp or cfcc ! ðeMs
hcpÞ ! a0Ms

bcc). In general, the relative
values of stacking fault energy, where a0 or e-martensite
formation, twinning or slip govern the plastic deformation
process, are ce;a0

SFE < cT
SFE < cslip

SFE [1–3]. According to numer-
ous investigations, a0-martensite nucleates at the intersec-
tion of shear bands [1–5]. Therefore, as shear bands in
austenitic steels with low SFE consist of more or less per-
fect e-martensite [6], the presence of e-martensite is often
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considered a prerequisite for the formation of a0-martens-
ite. At lower SFE, the probability for the presence of
appropriate arrays of partial dislocations is increased,
and hence more a0-martensite nucleation sites are available
[1,3]. According to Lecroisey and Pineau [5], a0-martensite
nucleation can also occur at the intersection of a Shockley
partial dislocation and a deformation twin. However, since
the self-energy of the dislocation is increased in that case,
the reaction requires additional energy. This energy can
be provided, for example, by the energy released upon
the c ? a0 phase transformation due to the difference in
the Gibbs energies of the two phases, or by the assistance
of local stress concentrations.

In the present study, the thermodynamic modeling
approach originally proposed by Olson and Cohen [1]
was adopted to calculate the ideal stacking fault energy
cSFE for the Fe–Cr–Ni–Mn–Al–Si–Cu–C–N system over
a wide range of temperatures. The thermodynamic datasets
needed for the calculations were acquired from the litera-
ture and implemented into a Matlab code, which was pro-
grammed for this purpose. The applicability of the model
was verified in two ways: by direct comparison of the
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http://dx.doi.org/10.1016/j.actamat.2010.10.037
mailto:sven.curtze@oxinst.com
http://dx.doi.org/10.1016/j.actamat.2010.10.037


S. Curtze et al. / Acta Materialia 59 (2011) 1068–1076 1069
calculated SFE values with those obtained from X-ray
diffraction (XRD) measurements, and by studying the
materials’ propensities to stress or strain induced phase
transformations and/or twinning by analyzing pre-strained
specimens with the electron backscatter diffraction (EBSD)
technique.

1.1. Thermodynamic modeling of the SFE

The flowchart in Fig. 1 shows a summary of the equations
forming the basis of the present model. A detailed descrip-
tion of the model can be found, for example, in Ref. [7]. In
the present paper, only the modifications and extensions
made to the basic model are described more thoroughly,
such as the implementation of the effect of nitrogen and
the changes in the model due to the additional substitutional
alloying elements Cr, Ni and Cu. The chemical compositions
Fig. 1. Flow chart of the therm
of the materials for which SFE calculations were performed
are presented in Table 1. The materials include two chro-
mium–nickel alloyed stainless steels, seven chromium–man-
ganese–nickel–nitrogen alloyed stainless steels and one high
manganese TWIP steel.

The main assumption of the model originally proposed
by Olson and Cohen [1] is that a stacking fault in an fcc
crystal structure is basically a thin layer of hexagonal
close-packed (hcp) phase, separated from the matrix by a
phase boundary on each side. The ideal stacking fault
energy cSFE is then expressed by

cSFE ¼ 2qDGc!e þ 2r ð1Þ
where q is the molar surface density along {1 1 1} planes,
DGc!e is the molar Gibbs energy of the austenite to e-mar-
tensite phase transformation cfcc ! eMs

hcp and r is the interfa-
cial energy per unit area of the phase boundary. It is
odynamic SFE calculations.



Table 1
Chemical compositions of the materials for which the SFE calculations were performed (in wt.%).

Grade C Si Mn Cr Ni Al Cu N Fe Calculated cRT
SFE Measured cRT

SFE

1.4301 0.049 0.43 1.49 18.2 8.2 0.003 0.43 0.047 Bal. 30.0
1.4301-1 0.041 0.33 1.71 18.2 8.1 0.37 0.054 Bal. 29.2 17.8 ± 1.2
1.4310 0.093 1.12 1.22 16.7 6.4 0.002 0.25 0.074 Bal. 26.6
1.4372 0.045 0.35 6.97 17.6 4.5 0.005 0.25 0.198 Bal. 24.6
1.4318 0.030 0.50 1.23 17.4 6.6 0.168 0.168 Bal. 23.7
1.4318-1 0.019 0.48 1.61 17.6 6.6 0.22 0.094 Bal. 23.2 12.8 ± 1.5
1.4318-2 0.017 0.51 1.34 17.4 6.6 0.14 0.145 Bal. 22.6 14.7 ± 0.8
TWIP-1 0.08 0.28 28.0 <0.01 1.6 Bal. 27.0
201Cu 0.047 0.29 5.70 17.3 4.7 0.001 2.39 0.107 Bal. 24.9
204Cu 0.079 0.40 9.00 15.2 1.1 0.002 1.68 0.115 Bal. 16.8

Test heats are designated with an additional number after the EN standard code, e.g. 1.4301-1.

Table 2
Functions describing the change in the Gibbs energy DGc!e

u upon the
cfcc ! eMs

hcp phase transformation for the pure elements Fe, Mn, Cr, Ni, Cu,
Al and Si, the excess energy coefficients Xc!e

u/ used in the study, the
empirical formula describing the effect of carbon on DGc!e; and both the
bulk and segregation contributions by N.

Parameter Function (J mol�1) Reference

DGc!e
Fe �2243.38 + 4.309 T [17]

DGc!e
Mn �1000.00 + 1.123 T [17]

DGc!e
Cr 1370–0.163 T [12,17]

DGc!e
Ni 1046 + 1.255 T [17]

DGc!e
Cu 600 + 0.2 T [17]

DGc!e
Al 2800 + 5 T [12]

DGc!e
Si �560–8 T [12]

DGc!e
NðbulkÞ See Eq. (18) [2]

DGc!e
segðintÞ See Eq. (19)–(25) [2,4,5,7]

DGc!e
FeMnX=C

1246
vC
ð1� expð�24:29vCÞ � 17:175vMn [12]

Xc!e
FeMn 2873–717 (vFe � vMn) [19]

Xc!e
FeCr 2095 [15]

Xc!e
FeNi 2095 [15]

Xc!e
FeAl 3328 [19]

Xc!e
FeSi 2850 + 3520 (vFe � vSi) [12]

Xc!e
CrNi 4190 [15]
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assumed that the system is a regular solid solution of atoms
in substitutional lattice sites and interstitial atoms in the
octahedral sites of the fcc and hcp crystal structures.

In the present study, the lattice parameter a required to
calculate the molar surface density q was determined from
XRD measurements on the studied steel grades using Ge-fil-
tered Co Ka radiation. An average value a = 3.60 ± 0.01 Å
was obtained for all grades. The lattice parameter a was
assumed to be independent of temperature, which is a rea-
sonable approximation since the variation in a for compara-
ble materials is typically of the order ±0.01 Å in the
temperature range in question [8], and therefore its effect
on cSFE is negligible. The energy per surface unit of the
{1 1 1} interface between e and c phases was assumed to be
r = 8 mJ m�2, which is a typical value reported for compa-
rable chemical compositions [1,9,10].

In the present model, the term DGc!e in Eq. (1) accounts
for the change in the Gibbs energy DGc!e

q of each element u
upon the cfcc ! eMs

hcp phase transformation, the excess free
energies Xc!e

u/ , i.e. the first-order interactions between ele-
ments u and /, magnetic contributions to the Gibbs energy
DGc!e

mg , and the effect of interstitial nitrogen. Hence, the
change in the molar Gibbs energy DGc!e can be written as

DGc!e ¼
X

i

viDGc!e
i þ

X
ij

vivjX
c!e
ij þ DGc!e

mg þ DGc!e
segðintÞ

ð2Þ
with v the molar fractions of the pure alloying elements.

The first three terms of Eq. (2) have been described thor-
oughly in Ref. [7]. The thermodynamic datasets needed for
the calculations were acquired from the literature, mostly
from publications of CALPHAD studies. Table 2 summa-
rizes the datasets used in the present study.

The magnetic contribution DGc!e
mg to the change in the

Gibbs energy DGc!e due to the Néel transition of each
phase U, i.e. the paramagnetic-to-antiferromagnetic transi-
tion, was calculated by

DGc!e
mg ¼ Ge

mg � Gc
mg ð3Þ

The magnetic contribution to the Gibbs energy G of
each phase U, GU

mg, was calculated following Hillert and
Jarl’s [11] modification of the model proposed by Inden
[12] as
GU
mg ¼ RT lnðbU þ 1Þf UðsUÞ ð4Þ

with R the gas constant, T the temperature, bU the mag-
netic moment of phase U divided by the Bohr magneton
lB, and f UðsUÞ a polynomial function of the scaled Néel
temperature sU ¼ T =T U

N�eel [11]. The magnetic moment of
the austenite phase was calculated using the weighted sums
of the pure elements’ magnetic moments

bc ¼ vFebFe þ vMnbMn þ vNibNi � vCrbCr

� vFevMnþNibFeMn=Ni � vCbC ð5Þ

where bFe, bMn, bNi and bCr are empirical values for the
magnetic moments of the pure elements and bFeMn/Ni is a
second order term originally proposed by Cotes et al. [13]
for the binary Fe–Mn system, which takes account for
the deviation from generic mixture behavior. In Eq. (5),
the influence of carbon was introduced by the additional
term (�vCbC), as proposed by Dumay et al. [14]. The influ-
ence of Al, Si and Cu on the magnetic moment was not ta-
ken into consideration, neither that of N, which has only a
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minor effect on DGc!e
mg [15]. According to Huang [16], the

values for bFe and bMn are 0.7 and 0.62, respectively, and
the values for bNi and bCr are 0.62 [17] and 0.8 [11], respec-
tively. The values bFeMn = 0.64 and bC = 4 were taken
from Dumay et al. [14]. The magnetic moment of the e
phase was calculated according to Huang [16] with the
additional term proposed by Dumay et al. [14] as

be ¼ vMnbMn � vCbC ð6Þ
The magnetic transition temperature T U

N�eel was calcu-
lated according to the empirical expressions presented in
Ref. [18]. For T c

N�eel, an additional term was needed to take
into account the effect of Ni on the Néel temperature. This
term was obtained by a linear fit of empirical T c

N�eel data at
varying Ni concentrations taken from the literature [18,19],
so that

T c
N�eel ¼ 251:71þ 681vMn � 272vCr � 1800vNi

� 1151vAl � 1575vSi � 1740vC ð7Þ

and

T e
N�eel ¼ 580vMn ð8Þ

The formulas for bU/lB and the Néel temperature T U
N�eel

are summarized in Table 3.
In order to include also the contribution of nitrogen in

the stacking fault energy calculations, the approach pre-
sented by Yakubtsov et al. [15] was adopted. Nitrogen con-
tributes to the Gibbs energy change in two ways: by a bulk
effect and by a segregation effect due to the segregation of
nitrogen to stacking faults. The bulk effect arises from the
interaction of nitrogen with alloying elements in the substi-
tutional lattice sites. Its contribution to the change in
Gibbs energy can be included in the first summation term
of Eq. (2) by adding DGc!e

NðbulkÞ: The contribution arising
from nitrogen segregation to stacking faults is taken into
account by the last term in Eq. (2).

1.2. Calculation of nitrogen contribution to the change in

Gibbs energy

The bulk contribution to the change in Gibbs energy
arising from interstitial nitrogen atoms is taken into
account by calculating the change in the configurational
energies of interstitial nitrogen atoms surrounded by atoms
in substitutional lattice sites upon the cfcc ! eMs

hcp phase
transformation, i.e.

DGc!e
NðbulkÞ ¼ Ee

N � Ec
N ð9Þ
Table 3
The formulas for bU/lB and the Néel temperature T U

N�eel (in K).

Parameter Function

T c
N�eel T c

N�eel ¼ 251:71þ 681vMn � 272vCr � 1800vNi

T e
N�eel 580vMn

bc vFe0.7 + vMn0.62 + vNi0.62 � vCr0.8 � vFevM

be vMn0.62 � vC4
where Ee
N and Ec

N are the configurational energies of inter-
stitial nitrogen in the e and c phases, respectively. In the
present study, only the first nearest neighbor interaction
energies between interstitial and substitutional atoms were
considered in the calculations of EU

N, and substitutional
sites were only occupied by the four major elemental com-
ponents, i.e. Fe, Mn, Cr and Ni, hence

EU
N ¼

X6

m¼0

X6�j�k�l

i¼0

X6�k�l

j¼0

X6�l

k¼0

X6

l

ðn1ÞiUU
1N þ ðn2ÞjUU

2N

h
þ n3ÞkUU

3N þ ðn4ÞlUU
4N

� �
ðnNÞm ð10Þ

where ðn1...4Þi...l is the number of atoms of each type of sub-
stitutional element 1 . . . 4 occupying the substitutional lat-
tice sites in the alloy, UU

1...4N is the interaction energy
between each type of substitutional element and interstitial
nitrogen, nN is the number of nitrogen atoms in interstitial
sites per unit cell and m is the number of interstitial (octa-
hedral) sites in each unit cell of phase U. Since

ðn1Þi þ ðn2Þj þ ðn3Þk þ ðn4Þl ¼ 6 ð11Þ

and hence

ðn2Þj ¼ 6� ðn1Þi � ðn3Þk � ðn4Þl ð12Þ

one can substitute ðn2Þj in Eq. (10) by Eq. (12), which leads
to

EU
N ¼

X6

m¼0

X6�j�k�l

i¼0

X6�k�l

j¼0

X6�l

k¼0

X6

l

ðn1ÞiUU
1N þ ð6� ðn1Þi

�
� n3Þk � ðn4ÞlÞjUU

2N þ ðn3ÞkUU
3N þ ðn4ÞlUU

4N

� i
ðnNÞm
ð13Þ

By rearranging the terms one obtains

EU
N ¼ ðUU

1N � UU
2NÞ
X6

m¼0

X6�j�k�l

i¼0

ðn1ÞiðnNÞm

þ UU
3N � UU

2N

� �X6

m¼0

X6

l¼0

ðn3ÞlðnNÞm

þ UU
4N � UU

2N

� �X6

m¼0

X6�l

k¼0

ðn4ÞkðnNÞm

þ 6UU
2N

X6

m¼6

ðnNÞm ð14Þ

As shown by Smirnov [20], the following equation is
valid for close packed crystal structure alloy systems with
nitrogen as interstitial alloying element and 1 . . . Z ele-
ments occupying the substitutional lattice sites [15]:
Reference

� 1151vAl � 1575vSi � 1740vC [11] modified
[16]

n0.64 � vC4 [7,12,16,21] modified
[12,16]



Table 4
The numerical values for the difference in interaction energies between
each nitrogen-substitutional alloying element pair in the fcc structure.

Thermodynamic term Numerical value (J mol�1) Reference

U c
FeN � U c

CrN 18.800 [13]
U c

FeN � U c
NiN �17.000 [13]

U c
CrN � U c

NiN 35.800 [13]
U c

FeN � U c
MnN 8.800 [13]

U c
CrN � U c

MnN �10.000 [13]
U c

NiN � U c
MnN 25.800 [13]
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X6

m¼0

X
i¼0

ðn1ÞiðnNÞm ¼
6vNv1 exp

UU
1N

RTP
Z

vZ exp
UU

ZN

RT

ð15Þ

whileX
Z

vZ ¼ 1 ð16Þ

where v1 and vZ are the molar fractions of atoms 1 . . . Z

occupying the substitutional lattice sites, and vN the molar
fraction of nitrogen. For the present case of an alloy system
with four types of atoms occupying the substitutional lat-
tice sites and nitrogen in the interstitial sites, Eq. (14) can
be rewritten as

EU
N ¼ 6vNUU

2N þ UU
1N � UU

2N

� � 6vNv1 exp
UU

1N

RTP4
Z¼1

vZ exp
UU

ZN

RT

þ UU
3N � UU

2N

� � 6vNv3 exp
UU

3N

RTP4
Z¼1

vZ exp
UU

ZN

RT

þ UU
4N � UU

2N

� � 6vNv4 exp
UU

4N

RTP4
Z¼1

vZ exp
UU

ZN

RT

ð17Þ

Recalling Eq. (9) and replacing the configurational ener-
gies Ee

N and Ec
N of interstitial nitrogen in the e and c phase,

respectively, by the expression in Eq. (17), one obtains the
expression for the change in Gibbs energy arising from inter-
stitial nitrogen upon the cfcc ! eMs

hcp phase transformation:

DGc!e
NðbulkÞ ¼Ee

N�Ec
N

¼6 U e
2N�U c

2N

� �
þ ðU e

1N�U e
2NÞv1

v1þv2 exp �ðU
e
1N
�U e

2N
Þ

RT

h i
þv3 exp � U e

1N
�U e

3Nð Þ
RT

� �
þv4 exp � U e

1N
�U e

4Nð Þ
RT

� �
2
664

þ
U e

3N�U e
2N

� �
v3

v1 exp½� U e
3N
�U e

1Nð Þ
RT �þv2 exp½� U e

3N
�U e

2Nð Þ
RT �þv3þv4 exp½� U e

3N
�U e

4Nð Þ
RT �

þ
U e

4N�U e
2N

� �
v4

v1 exp½� U e
4N
�U e

1Nð Þ
RT �þv2 exp½� U e

4N
�U e

2Nð Þ
RT �þv3 exp½� U e

4N
�U e

3Nð Þ
RT �þv4

� U c
1N�U c

2Nð Þv1

v1þv2 exp½� U c
1N
�U c

2Nð Þ
RT �þv3 exp½� U c

1N
�U c

3Nð Þ
RT �þv4 exp½� U c

1N
�U c

4Nð Þ
RT �

� U c
3N�U c

2Nð Þv3

v1 exp½� U c
3N
�U c

1Nð Þ
RT �þv2 exp½� U c

3N
�U c

2Nð Þ
RT �þv3þv4 exp½� U c

3N
�U c

4Nð Þ
RT �

� U c
4N�U c

2Nð Þv4

v1 exp½� U c
4N
�U c

1Nð Þ
RT �þv2 exp½� U c

4N
�U c

2Nð Þ
RT �þv3 exp½� U c

4N
�U c

3Nð Þ
RT �þv4

3
5

ð18Þ

Eq. (18) requires empirical values for the difference in
the interaction energies between each nitrogen-substitu-
tional alloying element pair in both fcc and hcp structures.
The values for the c phase are summarized in Table 4. For
the calculation of the corresponding e phase values, one
can make use of the expression proposed by Kaufman
and Bernstein [21] and Ishikawa and Endoh [22]:

U e
ij ¼ DGc!e

i þ U c
ij ð19Þ

where the subscript i stands for the major alloying element,
such that, for example
U c
FeN � U c

NiN ¼ U e
FeN � U e

NiN

� �
þ DGc!e

Fe � DGc!e
Ni

� �
ð20Þ

Expressions for the other pairs of interacting elements
can be obtained correspondingly. The first term in Eq.
(18), i.e. ðU e

2N � U c
2NÞ; can also be derived from Eq. (19),

which then becomes DGc!e
i .

The change in Gibbs energy due to the segregation of
nitrogen to stacking faults DGc!e

segðintÞ can be divided into
three parts [15,7]: the chemical Gibbs energy due to Suzuki
segregation DGc!e

chemðintÞ, the surface Gibbs energy DGc!e
surf ðintÞ

due to the concentration difference between the matrix
and stacking faults, and the elastic Gibbs energy DGc!e

elðintÞ,
arising from the segregation of elements with different
atomic sizes, such that

DGc!e
segðintÞ ¼ DGc!e

chemðintÞ þ DGc!e
surf ðintÞ þ DGc!e

elðintÞ ð21Þ

According to Ishida [17], DGc!e
chemðintÞ can be calculated as

DGc!e
chemðintÞ¼RT vNðbulkÞ ln

vNðsegÞ

vNðbulkÞ
þ 1�vNðbulkÞ

� 	
ln

1�vNðsegÞ

1�vNðbulkÞ

" #

ð22Þ
The concentration of nitrogen on stacking faults vNðsegÞ

can be calculated from the concentration of nitrogen in
the bulk vNðbulkÞ, assuming that the equilibrium condition
is satisfied, i.e. the chemical potentials of the c and e phases
are the same such that

dGc

dvNðbulkÞ
¼ dGe

dvNðsegÞ
ð23Þ

where Gc and Ge are the free energies of the c and e phases,
respectively [17]. For a binary alloy, Eq. (23) becomes

� DGc!e
1ðsubÞ þ DGc!e

NðintÞ þ DU c!e
1N

þ 2 U e
1NvNðsegÞ � U c

1NvNðbulkÞ

� 	
þ RT ln

1� vNðsegÞ

1� vNðbulkÞ
¼ 0

ð24Þ

However, since the interaction energies UU
X N for nitrogen

with the substitutional elements (Fe, Mn, Cr, Ni) are not
available in the literature, the c and e phases were assumed
to be ideal solutions (i.e. U c

X N ¼ U e
X N ¼ 0), following Ish-

ida’s [17] approach. Due to the absence of further thermo-
dynamic data needed for the calculation of the
concentration of nitrogen on stacking faults vNðsegÞ, more
simplifications have to be made [15]. Therefore, the estima-
tion proposed by Yakubtsov et al. [15] was adopted in the
present study with



Fig. 2. Comparison of the modeled and measured room temperature
SFEs cRT

SFE for selected materials. The error bars indicate the standard
deviation of five XRD measurements and therefore represent the
measurement reproducibility [32].

Fig. 3. The SFEs cSFE of the materials as a function of temperature. For
better readability, the heats 1.4301-1, 1.4318-1 and 1.4318-2 were not
included in the plot.
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vNðsegÞ ¼ 1þ
1� vNðbulkÞ

vNðbulkÞ
exp

�K
RT


 �" #�1

ð25Þ

where K is the interaction energy of nitrogen with a dislo-
cation in the fcc structure.

For the calculation of the change in surface Gibbs
energy DGc!e

surf ðintÞ, the expression from the work of Ericsson
[23] was adopted:

DGc!e
surf ðintÞ ¼

1

4
K vNðsegÞ � vnðbulkÞ

� 	2

ð26Þ

The interaction energy K of nitrogen with a dislocation
in the fcc structure was obtained by fitting a linear function
to empirical K values at fixed nitrogen contents taken from
the literature [15,24]. The following expression for K was
obtained:

K ¼ 11; 848þ 824vN ð27Þ
The change in elastic energy DGc!e

elðintÞ associated with the
segregation of atoms of different size to stacking faults can
be described by the term proposed by Suzuki [25] as

DGc!e
elðintÞ ¼

2

9
l

1þ t
1� t

dV
dX


 �
1

V
vNðsegÞ � vNðbulkÞ

� 	2

ð28Þ

with l the shear modulus, t Poisson’s ratio and V the molar
volume of the alloy. The elastic Gibbs energy contribution
to the total change in Gibbs energy upon cfcc ! eMs

hcp phase
transformation is, however, negligible and was therefore
neglected in the present study.

2. Results and discussion

All the microstructural studies described in the follow-
ing were performed on sheet steels originally delivered in
the annealed condition. The materials were deformed in
uniaxial tensile tests at low strain rates (average strain rates
3 � 10�4

6 _e 6 10�3 s�1).
The stacking fault energy values cRT

SFE calculated at room
temperature for all studied materials are shown in Table 1.
Fig. 2 shows these values together with experimentally
measured cRT

SFE values for some of the materials, and
Fig. 3 illustrates the modeled stacking fault energies as a
function of temperature. The experimental cRT

SFE values were
determined using the XRD line broadening and diffraction
line displacement analysis. This technique is reviewed and
described in detail, e.g. by Reed and Schramm [26,27]
and Talonen [6].

Although the thermodynamically calculated and experi-
mentally determined stacking fault energies differ in terms
of absolute values, the relative correlation appears to be rea-
sonably good. The deviation in the level of the SFE values
obtained by the two different methods can be assigned to
two main reasons. On the one hand, the thermodynamic
stacking fault energy model presented in this paper does
not describe an intrinsic material property but rather the ide-
alized stacking fault energy for an infinite stacking fault with
negligible lattice distortions within the stacking fault. Unlike
in real crystals, where dislocations and dislocation configu-
rations, point defects, grain size and so forth can affect the
stacking fault energy, these effects are not taken into account
in the model. An attempt to take into consideration the effect
of partial dislocations bounding the stacking fault was pro-
posed by Müllner and Ferreira [28]. Studies by Jun and Choi
[29] and Yang and Wan [30] investigated the correlation
between the SFE and the austenite grain size, showing that
the effect of the grain size becomes only of importance for
small grain sizes. For larger grain sizes exceeding about
30 lm, the grain size effect reduces to less than 2 mJ m–2
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and saturates to zero for grain sizes around 150 lm [30].
Recent work by Saeed-Akbari et al. [31] confirmed these
findings. On the other hand, both methods for determining
the SFE are subject to quite considerable uncertainties due
to measurement errors and lack of resolution in the XRD
method, and assumptions and simplifications made in the
calculations, which are discussed in more detail, for example,
in Refs. [1,6,10,17,23,29,32–38].

At room temperature, the SFE of the 1.4301 stainless
steel grade is highest of the studied materials, indicating
rather high stability of the microstructure against martens-
ite transformation, especially at low degrees of plastic
deformation. EBSD scans on specimens deformed to 20%
of engineering strain gave virtually no evidence of martens-
ite transformation, with the exception of some small a0-
martensite clusters present in shear bands and at twin
boundaries.

Fig. 4a is an electron backscatter pattern (EBSP) quality
map of the 1.4310 steel after 20% of engineering strain
combined with phase identification maps for a0-martensite
(colored in red) and e-martensite (colored in yellow). Small
e-martensite phase fractions can be identified only in some
shear bands, while smaller and larger arrays of a0-martens-
ite are clearly present in quite many of the grains. The e-
and a0-martensite phase fractions were determined to be
0.14% and 6.15%, respectively.

In the high manganese TWIP steel, martensite forma-
tion was not observed at any stage of deformation. Ini-
tially, at low deformations, the thickness of deformation
Fig. 4. EBSP quality map with e- and a0-martensite phase identification maps
after 20% (b) and 10.5% (c) plastic engineering strain, and the orientation map
red (d). (For interpretation of the references to colour in this figure legend, th
twins is also too low to be resolved by the EBSD technique.
Only a few deformation twins were identified by the EBSD
technique after 11% of tensile elongation, as can be seen in
Fig. 5a, where twin boundaries are colored in yellow. How-
ever, at this stage of deformation the EBSP quality maps
reveal shear bands in some of the grains, as can be seen
in Fig. 5b. In the present case, the low band contrast signal
obtained from the shear bands originates from the overlap-
ping of the twin and matrix patterns, as Barbier et al. [38]
have also shown in a study on high manganese TWIP
steels. By deconvolution of the two patterns, the shear
bands can be identified as twins. This procedure was
adopted also in the present study and it confirmed the find-
ings of Barbier et al. [38]. With increasing strain, the
nanotwins stack up to bundles that can be resolved and
indexed as twin domains by the EBSD technique. The
actual thickness of the twins, however, is easily being over-
estimated due to the limitations in the spatial resolution of
the EBSD technique. In fact, matrix laths remain between
the stacked nanotwins, as transmission electron micros-
copy studies proved [39]. The twinning activity increases
during further straining and secondary conjugate twin sys-
tems become active, as can be seen in Fig. 5c, where the
EBSP quality map of TWIP 1 is shown after 30% of plastic
deformation. Twins on conjugate slip planes form only
after the tensile axis has rotated near to, or beyond, the
h0 01i � h�11 1i symmetry line, where the primary and con-
jugate systems are equally stressed, as also predicted by
theoretical considerations [33]. Fig. 5d shows the twinned
of the 1.4310 steel after 20% plastic engineering strain (a), the 204Cu steel
of the 201Cu steel after 20% plastic engineering strain with twins colored in
e reader is referred to the web version of this article.)



Fig. 5. Orientation map (IPF-x coloring scheme) (a) and EBSP quality map of the TWIP 1 steel after engineering strains of 11% (b), 35% (c) and 64% (d).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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microstructure at fracture, where overlapping of twins with
slip bands can be observed easily from the strong curvature
of the twins, especially in heavily deformed sub-grain
sections.

The 201Cu steel with a slightly lower SFE than the
TWIP and the 1.4310 steel revealed only mechanical twin-
ning after 20% engineering strain, and no martensite was
detected, as can be seen from the EBSD orientation map
in Fig. 4d. On the other hand, in the 204Cu steel, which
had by far the lowest stacking fault energy of all studied
materials, the e- and a0-martensite phase fractions were
higher than in any of the other materials at this stage of
deformation. In particular, the tendency to form e-mar-
tensite was highest in the 204Cu, indicating that the low
SFE promotes formation of e-martensite. Fig. 4b shows
the EBSP quality map of the 204Cu steel together with
the phase identification maps. The measured e-martensite
phase fraction was 1.5% and the a0-martensite phase frac-
tion 9.6%. Compared to the 1.4310 grade, the phase frac-
tion in e-martensite is significantly higher in the 204Cu
steel, whereas the a0-martensite phase fractions are of the
same order of magnitude. Also the amount of shear bands
in general appears to be larger in this steel compared with
the other grades. It seems that e-martensite is present in the
shear bands while a0-martensite plates form at the shear
band intersections. This observation is confirmed by
Fig. 4c, which shows well the formation of e-martensite
in the shear bands and the formation of a0-martensite in
the shear band intersections in the 204Cu steel after
10.5% engineering strain. Almost all sites revealing a0-mar-
tensite also reveal e-martensite, strongly supporting the
idea that a0-martensite nucleation preferentially takes place
at the e-martensite phase. Since the nucleation of a0-mar-
tensite requires an intersection of shear bands, a0-martens-
ite will only form in grains where two conjugate slip band
systems are activated. Therefore a0-martensite nucleation
can be expected to also depend on the development of
the deformation texture during plastic straining of the
material.

3. Summary and Conclusions

A thermodynamic model for the calculation of the
stacking fault energies of Fe–Cr–Ni–Mn–Al–Si–Cu–C–N
austenitic steels was presented. The approach originally
proposed by Olson and Cohen [1] was expanded with Yak-
ubtsov et al.’s [15] proposal to account also for the effect of
interstitial nitrogen. The SFE in the temperature range
50 6 T 6 600 K was calculated for 10 austenitic steels
and compared with XRD measurement results on some
of these materials. The deformation mechanisms in selected
grades were studied using EBSD.

� A good qualitative correlation between thermodynami-
cally modeled and experimentally determined SFE val-
ues was obtained. Quantitatively, however, there was a
systematic offset observed between the calculated and
measured SFE values.
� The tendency for e- and a0-martensite formation

increased with decreasing SFE in good correlation with
the modeled SFE values. In particular, the formation of
e-martensite was promoted by lower SFE. The twinning
propensity was in general higher in steels with higher
Mn contents, while in the Cr–Ni alloys martensite
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transformations generally set in at higher SFE levels. A
possible explanation for this is the higher driving energy
towards a0-martensite formation due to a larger differ-
ence in the Gibbs energies of the c and a0 phases.
� e-martensite was generally found in shear bands, while

a0-martensite transformation occurred preferentially at
shear band intersections.
� Twins on conjugate slip planes formed only after the

tensile axis had rotated to or close to the h001i–h�111i
symmetry line. This can also be expected for a0-martens-
ite nucleation due to the requirement of intersecting slip
bands for a0-martensite formation. The occurrence of
twinning and of both e- and a0-martensite transforma-
tion therefore seem to depend on the initial orientation
of individual grains and on the development of the crys-
tallographic texture during the deformation of fully
austenitic steels.
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[10] Ferreira PJ, Müllner P. Acta Mater 1998;46(13):4479–84.
[11] Hillert M, Jarl M. CALPHAD 1978;2:227–38.
[12] Inden G. Phys B 1981;103:82–100.
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