From 7ccd72052466f6d32d33546bb1349e719c941836 Mon Sep 17 00:00:00 2001 From: Vishakh Kumar Date: Mon, 12 May 2025 00:31:50 +0400 Subject: [PATCH] Moved all preliminaries inside, so that I can turn it off from emacs --- Thesis.bbl | 1961 +++++++++++++++++++++++++-------------------------- Thesis.lot | 1 - Thesis.mtc1 | 22 +- Thesis.org | 663 ++++++++++++----- Thesis.pdf | 4 +- Thesis.tex | 619 ++++++++++------ 6 files changed, 1842 insertions(+), 1428 deletions(-) diff --git a/Thesis.bbl b/Thesis.bbl index 4bcac41..64b4eee 100644 --- a/Thesis.bbl +++ b/Thesis.bbl @@ -18,7 +18,183 @@ \refsection{0} - \datalist[entry]{none/global//global/global/global} + \datalist[entry]{nty/global//global/global/global} + \entry{ahmedMappingMechanicalProperties2023}{article}{}{} + \name{author}{3}{}{% + {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% + family={Ahmed}, + familyi={A\bibinitperiod}, + given={R.}, + giveni={R\bibinitperiod}}}% + {{hash=8da5f61983121a25e044ca92bd036b2a}{% + family={Fardan}, + familyi={F\bibinitperiod}, + given={A.}, + giveni={A\bibinitperiod}}}% + {{hash=0e68382b25995f7a55c9b600def7c365}{% + family={Davies}, + familyi={D\bibinitperiod}, + given={S.}, + giveni={S\bibinitperiod}}}% + } + \strng{namehash}{b3a15b2b31620e3640b3b3a16271687c} + \strng{fullhash}{b3a15b2b31620e3640b3b3a16271687c} + \strng{fullhashraw}{b3a15b2b31620e3640b3b3a16271687c} + \strng{bibnamehash}{b3a15b2b31620e3640b3b3a16271687c} + \strng{authorbibnamehash}{b3a15b2b31620e3640b3b3a16271687c} + \strng{authornamehash}{b3a15b2b31620e3640b3b3a16271687c} + \strng{authorfullhash}{b3a15b2b31620e3640b3b3a16271687c} + \strng{authorfullhashraw}{b3a15b2b31620e3640b3b3a16271687c} + \field{sortinit}{A} + \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{Stellite alloys have good wear resistance and maintain their strength up to 600°C, making them suitable for various industrial applications like cutting tools and combustion engine parts. This investigation was aimed at i) manufacturing new Stellite alloy blends using powder metallurgy and ii) mathematically mapping hardness, yield strength, ductility and impact energy of base and alloy blends. Linear, exponential, polynomial approximations and dimensional analyses were conducted in this semi-empirical mathematical modelling approach. Base alloy compositions similar to Stellite 1, 4, 6, 12, 20 and 190 were used in this investigation to form new alloys via blends. The microstructure was analysed using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Mechanical performance of alloys was conducted using tensile, hardness and Charpy impact tests. MATLAB® coding was used for the development of property maps. This investigation indicates that hardness and yield strength can be linked to the wt.\% composition of carbon and tungsten using linear approximation with a maximum variance of 5\% and 20\%, respectively. Elongation and carbide fraction showed a non-linear relationship with alloy composition. Impact energy was linked with elongation through polynomial approximation. A dimensional analysis was developed by interlinking carbide fraction, hardness, yield strength, and elongation to impact energy.} + \field{issn}{2374-068X} + \field{journaltitle}{Advances in Materials and Processing Technologies} + \field{month}{6} + \field{note}{1 citations (Semantic Scholar/DOI) [2025-04-12] Publisher: Taylor \& Francis \_eprint: https://doi.org/10.1080/2374068X.2023.2220242} + \field{number}{0} + \field{title}{Mapping the mechanical properties of cobalt-based stellite alloys manufactured via blending} + \field{urlday}{13} + \field{urlmonth}{7} + \field{urlyear}{2024} + \field{volume}{0} + \field{year}{2023} + \field{urldateera}{ce} + \field{pages}{1\bibrangedash 30} + \range{pages}{30} + \verb{doi} + \verb 10.1080/2374068X.2023.2220242 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1080/2374068X.2023.2220242 + \endverb + \verb{url} + \verb https://doi.org/10.1080/2374068X.2023.2220242 + \endverb + \keyw{Blending,Hiping,Mathematical model,Powder metallurgy,Stellite alloys,Structure-property relationships} + \endentry + \entry{ahmedSlidingWearBlended2021a}{article}{}{} + \name{author}{3}{}{% + {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% + family={Ahmed}, + familyi={A\bibinitperiod}, + given={R.}, + giveni={R\bibinitperiod}}}% + {{hash=75bf7913ab7463c6e3734bec975046fc}{% + family={Villiers\bibnamedelima Lovelock}, + familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, + given={H.\bibnamedelimi L.}, + giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, + prefix={de}, + prefixi={d\bibinitperiod}}}% + {{hash=0e68382b25995f7a55c9b600def7c365}{% + family={Davies}, + familyi={D\bibinitperiod}, + given={S.}, + giveni={S\bibinitperiod}}}% + } + \strng{namehash}{652318761812c14e2605b641664892df} + \strng{fullhash}{652318761812c14e2605b641664892df} + \strng{fullhashraw}{652318761812c14e2605b641664892df} + \strng{bibnamehash}{652318761812c14e2605b641664892df} + \strng{authorbibnamehash}{652318761812c14e2605b641664892df} + \strng{authornamehash}{652318761812c14e2605b641664892df} + \strng{authorfullhash}{652318761812c14e2605b641664892df} + \strng{authorfullhashraw}{652318761812c14e2605b641664892df} + \field{sortinit}{A} + \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{This investigation reports on the tribomechanical evaluations of a Co-based alloy obtained by the hot isostatic pressing (HIPing) of a blend of two standard gas atomized cobalt alloy powders. A HIPed blend of Stellite 6 and Stellite 20 was used to investigate the effect of varying the C, Cr, and W content simultaneously on the structure-property relationships. Microstructural evaluations involved scanning electron microscopy and x-ray diffraction. Experimental evaluations were conducted using hardness, impact, tensile, abrasive wear and sliding wear tests to develop an understanding of the mechanical and tribological performance of the alloys. Results are discussed in terms of the failure modes for the mechanical tests, and wear mechanisms for the tribological tests. This study indicates that powder blends can be used to design for a desired combination of mechanical strength and wear properties in these HIPed alloys. Specific relationships were observed between the alloy composition and carbide content, hardness, impact energy and wear resistance. There was a linear relationship between the weighted W- and C-content and the carbide fraction. The abrasive wear performance also showed a linear relationship with the weighted alloy composition. The pin-on-disc and ball-on-flat experiments revealed a more complex relationship between the alloy composition and the wear rate.} + \field{issn}{0043-1648} + \field{journaltitle}{Wear} + \field{month}{2} + \field{note}{18 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{title}{Sliding wear of blended cobalt based alloys} + \field{urlday}{13} + \field{urlmonth}{7} + \field{urlyear}{2024} + \field{volume}{466-467} + \field{year}{2021} + \field{urldateera}{ce} + \field{pages}{203533} + \range{pages}{1} + \verb{doi} + \verb 10.1016/j.wear.2020.203533 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 + \endverb + \keyw{Blending,HIPing,Hardness,Powder metallurgy,Sliding wear,Stellite alloy} + \endentry + \entry{ahmedInfluenceReHIPingStructure2013}{article}{}{} + \name{author}{4}{}{% + {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% + family={Ahmed}, + familyi={A\bibinitperiod}, + given={R.}, + giveni={R\bibinitperiod}}}% + {{hash=75bf7913ab7463c6e3734bec975046fc}{% + family={Villiers\bibnamedelima Lovelock}, + familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, + given={H.\bibnamedelimi L.}, + giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, + prefix={de}, + prefixi={d\bibinitperiod}}}% + {{hash=0e68382b25995f7a55c9b600def7c365}{% + family={Davies}, + familyi={D\bibinitperiod}, + given={S.}, + giveni={S\bibinitperiod}}}% + {{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{% + family={Faisal}, + familyi={F\bibinitperiod}, + given={N.\bibnamedelimi H.}, + giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}% + } + \strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f} + \strng{fullhash}{e70fdd408b4a5e9730bd0722565b8e34} + \strng{fullhashraw}{e70fdd408b4a5e9730bd0722565b8e34} + \strng{bibnamehash}{e70fdd408b4a5e9730bd0722565b8e34} + \strng{authorbibnamehash}{e70fdd408b4a5e9730bd0722565b8e34} + \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} + \strng{authorfullhash}{e70fdd408b4a5e9730bd0722565b8e34} + \strng{authorfullhashraw}{e70fdd408b4a5e9730bd0722565b8e34} + \field{extraname}{1} + \field{sortinit}{A} + \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{HIP-consolidation (Hot Isostatic Pressing or HIPing) of cobalt-based Stellite alloys offers significant technological advantages for components operating in aggressive wear environments. The aim of this investigation was to ascertain the effect of re-HIPing on the HIPed alloy properties for Stellite 4, 6 and 20 alloys. Structure–property relationships are discussed on the basis of microstructural and tribo-mechanical evaluations. Re-HIPing results in coarsening of carbides and solid solution strengthening of the matrix. The average indentation modulus improved, as did the average hardness at micro- and nano-scales. Re-HIPing showed improvement in wear properties the extent of which was dependent on alloy composition.} + \field{issn}{0301-679X} + \field{journaltitle}{Tribology International} + \field{month}{1} + \field{note}{38 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{title}{Influence of {Re}-{HIPing} on the structure–property relationships of cobalt-based alloys} + \field{urlday}{30} + \field{urlmonth}{6} + \field{urlyear}{2024} + \field{volume}{57} + \field{year}{2013} + \field{urldateera}{ce} + \field{pages}{8\bibrangedash 21} + \range{pages}{14} + \verb{doi} + \verb 10.1016/j.triboint.2012.06.025 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 + \endverb + \keyw{Abrasive wear,Cobalt based alloys,HIPing and Re-HIPing,Stellite 4,6,20,alloys} + \endentry \entry{ahmedStructurePropertyRelationships2014}{article}{}{} \name{author}{4}{}{% {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% @@ -52,9 +228,9 @@ \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} \strng{authorfullhash}{0ba22f8fbb626d88357e4651c3f66f4d} \strng{authorfullhashraw}{0ba22f8fbb626d88357e4651c3f66f4d} - \field{extraname}{1} - \field{sortinit}{1} - \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} + \field{extraname}{2} + \field{sortinit}{A} + \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{This investigation considered the multiscale tribo-mechanical evaluations of CoCrMo (Stellite®21) alloys manufactured via two different processing routes of casting and HIP-consolidation from powder (Hot Isostatic Pressing). These involved hardness, nanoscratch, impact toughness, abrasive wear and sliding wear evaluations using pin-on-disc and ball-on-flat tests. HIPing improved the nanoscratch and ball-on-flat sliding wear performance due to higher hardness and work-hardening rate of the metal matrix. The cast alloy however exhibited superior abrasive wear and self-mated pin-on-disc wear performance. The tribological properties were more strongly influenced by the CoCr matrix, which is demonstrated in nanoscratch analysis.} @@ -82,98 +258,6 @@ \endverb \keyw{Manufacturing,Nanoscratch,Nanotribology,Wear} \endentry - \entry{malayogluComparingPerformanceHIPed2003}{article}{}{} - \name{author}{2}{}{% - {{hash=71f57eb10950396ed3fa62c703ddaee5}{% - family={Malayoglu}, - familyi={M\bibinitperiod}, - given={U.}, - giveni={U\bibinitperiod}}}% - {{hash=c00a172220606f67c3da2492047a9b71}{% - family={Neville}, - familyi={N\bibinitperiod}, - given={A.}, - giveni={A\bibinitperiod}}}% - } - \strng{namehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{fullhash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{fullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{bibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authorbibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authornamehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authorfullhash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authorfullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} - \field{sortinit}{2} - \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{In this paper, results from erosion–corrosion tests performed under liquid–solid erosion conditions in 3.5\% NaCl liquid medium are reported. The focus of the paper is to compare the behaviour of Cast and Hot Isostatically Pressed (HIPed) Stellite 6 alloy in terms of their electrochemical corrosion characteristics, their resistance to mechanical degradation and relationship between microstructure and degradation mechanisms. It has been shown that HIPed Stellite 6 possesses better erosion and erosion corrosion resistance than that of Cast Stellite 6 and two stainless steels (UNS S32760 and UNS S31603) under the same solid loading (200 and 500mg/l), and same temperature (20 and 50°C). The material removal mechanisms have been identified by using atomic force microscopy (AFM) and shown preferential removal of the Co-rich matrix to be less extensive on the HIPed material.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{8} - \field{note}{34 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{1} - \field{series}{14th {International} {Conference} on {Wear} of {Materials}} - \field{title}{Comparing the performance of {HIPed} and {Cast} {Stellite} 6 alloy in liquid–solid slurries} - \field{urlday}{17} - \field{urlmonth}{2} - \field{urlyear}{2025} - \field{volume}{255} - \field{year}{2003} - \field{urldateera}{ce} - \field{pages}{181\bibrangedash 194} - \range{pages}{14} - \verb{doi} - \verb 10.1016/S0043-1648(03)00287-4 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 - \endverb - \keyw{Cast Stellite 6,Corrosion,Erosion,HIPed,Liquid–solid slurries} - \endentry - \entry{davis2000nickel}{book}{}{} - \name{author}{2}{}{% - {{hash=d24975e937cc4c8eafeb981d8d16a1d4}{% - family={Davis}, - familyi={D\bibinitperiod}, - given={J.R.}, - giveni={J\bibinitperiod}}}% - {{hash=2e482fdb03378296689bc75a76c2bdc4}{% - family={Committee}, - familyi={C\bibinitperiod}, - given={A.S.M.I.H.}, - giveni={A\bibinitperiod}}}% - } - \list{publisher}{1}{% - {ASM International}% - } - \strng{namehash}{ded5e703628bfa51629c3e9340068998} - \strng{fullhash}{ded5e703628bfa51629c3e9340068998} - \strng{fullhashraw}{ded5e703628bfa51629c3e9340068998} - \strng{bibnamehash}{ded5e703628bfa51629c3e9340068998} - \strng{authorbibnamehash}{ded5e703628bfa51629c3e9340068998} - \strng{authornamehash}{ded5e703628bfa51629c3e9340068998} - \strng{authorfullhash}{ded5e703628bfa51629c3e9340068998} - \strng{authorfullhashraw}{ded5e703628bfa51629c3e9340068998} - \field{sortinit}{3} - \field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{isbn}{978-0-87170-685-0} - \field{note}{tex.lccn: 00059348} - \field{series}{{ASM} specialty handbook} - \field{title}{Nickel, cobalt, and their alloys} - \field{year}{2000} - \verb{urlraw} - \verb https://books.google.ae/books?id=IePhmnbmRWkC - \endverb - \verb{url} - \verb https://books.google.ae/books?id=IePhmnbmRWkC - \endverb - \endentry \entry{alimardaniEffectLocalizedDynamic2010}{article}{}{} \name{author}{4}{}{% {{hash=b1d020be51ce7b141b4cf03868da762c}{% @@ -205,8 +289,8 @@ \strng{authornamehash}{86846ed827567cfd839f7c014178ad64} \strng{authorfullhash}{6d9fe21dc14c2e93f67f0a8f73f5082f} \strng{authorfullhashraw}{6d9fe21dc14c2e93f67f0a8f73f5082f} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} + \field{sortinit}{A} + \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In laser cladding, high cooling rates create outcomes with superior mechanical and metallurgical properties. However, this characteristic along with the additive nature of the process significantly contributes to the formation of thermal stresses which are the main cause of any potential delamination and crack formation across the deposited layers. This drawback is more prominent for additive materials such as Stellite 1 which are by nature crack-sensitive during the hardfacing process. In this work, parallel to the experimental investigation, a numerical model is used to study the temperature distributions and thermal stresses throughout the deposition of Stellite 1 for hardfacing application. To manage the thermal stresses, the effect of preheating the substrate in a localized dynamic fashion is investigated. The numerical and experimental analyses are conducted by the deposition of Stellite 1 powder on the substrate of AISI-SAE 4340 alloy steel using a 1.1kW fiber laser. Experimental results confirm that by preheating the substrate a crack-free coating layer of Stellite 1 well-bonded to the substrate with a uniform dendritic structure, well-distributed throughout the deposited layer, can be obtained contrary to non-uniform structures formed in the coating of the non-preheated substrate with several cracks.} @@ -235,62 +319,63 @@ \endverb \keyw{Crack formation,Hardfacing alloys,Laser cladding,Preheating process,Temperature and thermal stress fields} \endentry - \entry{ahmedMappingMechanicalProperties2023}{article}{}{} + \entry{ashworthMicrostructurePropertyRelationships1999}{article}{}{} \name{author}{3}{}{% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, + {{hash=a0a9668f5a93080c8425a8cf80e9d0d2}{% + family={Ashworth}, familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=8da5f61983121a25e044ca92bd036b2a}{% - family={Fardan}, - familyi={F\bibinitperiod}, - given={A.}, - giveni={A\bibinitperiod}}}% + given={M.A.}, + giveni={M\bibinitperiod}}}% + {{hash=27753a82b6390957cb920ec5052f0810}{% + family={Jacobs}, + familyi={J\bibinitperiod}, + given={M.H.}, + giveni={M\bibinitperiod}}}% {{hash=0e68382b25995f7a55c9b600def7c365}{% family={Davies}, familyi={D\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% } - \strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{fullhash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{fullhashraw}{b3a15b2b31620e3640b3b3a16271687c} - \strng{bibnamehash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{authorbibnamehash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{authorfullhash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{authorfullhashraw}{b3a15b2b31620e3640b3b3a16271687c} - \field{extraname}{2} - \field{sortinit}{6} - \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} + \list{language}{1}{% + {EN}% + } + \strng{namehash}{68dce5901af799f73fc399cf947f81b9} + \strng{fullhash}{68dce5901af799f73fc399cf947f81b9} + \strng{fullhashraw}{68dce5901af799f73fc399cf947f81b9} + \strng{bibnamehash}{68dce5901af799f73fc399cf947f81b9} + \strng{authorbibnamehash}{68dce5901af799f73fc399cf947f81b9} + \strng{authornamehash}{68dce5901af799f73fc399cf947f81b9} + \strng{authorfullhash}{68dce5901af799f73fc399cf947f81b9} + \strng{authorfullhashraw}{68dce5901af799f73fc399cf947f81b9} + \field{sortinit}{A} + \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{abstract}{Stellite alloys have good wear resistance and maintain their strength up to 600°C, making them suitable for various industrial applications like cutting tools and combustion engine parts. This investigation was aimed at i) manufacturing new Stellite alloy blends using powder metallurgy and ii) mathematically mapping hardness, yield strength, ductility and impact energy of base and alloy blends. Linear, exponential, polynomial approximations and dimensional analyses were conducted in this semi-empirical mathematical modelling approach. Base alloy compositions similar to Stellite 1, 4, 6, 12, 20 and 190 were used in this investigation to form new alloys via blends. The microstructure was analysed using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Mechanical performance of alloys was conducted using tensile, hardness and Charpy impact tests. MATLAB® coding was used for the development of property maps. This investigation indicates that hardness and yield strength can be linked to the wt.\% composition of carbon and tungsten using linear approximation with a maximum variance of 5\% and 20\%, respectively. Elongation and carbide fraction showed a non-linear relationship with alloy composition. Impact energy was linked with elongation through polynomial approximation. A dimensional analysis was developed by interlinking carbide fraction, hardness, yield strength, and elongation to impact energy.} - \field{issn}{2374-068X} - \field{journaltitle}{Advances in Materials and Processing Technologies} - \field{month}{6} - \field{note}{1 citations (Semantic Scholar/DOI) [2025-04-12] Publisher: Taylor \& Francis \_eprint: https://doi.org/10.1080/2374068X.2023.2220242} - \field{number}{0} - \field{title}{Mapping the mechanical properties of cobalt-based stellite alloys manufactured via blending} - \field{urlday}{13} - \field{urlmonth}{7} - \field{urlyear}{2024} - \field{volume}{0} - \field{year}{2023} + \field{abstract}{In the present paper the microstructure and properties of a range of hipped Stellite powders are investigated, the basic aim of the study being to generate a materia/property database to facilitate alloy selection for potential applications involving net shape component manufacture. Particular attention is paid to the morphology, particle size distribution, and surface composition of the as atomised powders and their effect on subsequent consolidation. The consolidated powders are fully characterised in terms of microstructure and the composition and distribution of secondary phases. The effect of hipping temperature on the microstructure, hardness, and tensile properties of the powders are discussed in terms of the optimum processing temperature for the various alloys.} + \field{issn}{0032-5899} + \field{journaltitle}{Powder Metallurgy} + \field{month}{3} + \field{note}{23 citations (Semantic Scholar/DOI) [2025-04-12] Publisher: SAGE Publications} + \field{number}{3} + \field{title}{Microstructure and property relationships in hipped {Stellite} powders} + \field{urlday}{3} + \field{urlmonth}{4} + \field{urlyear}{2025} + \field{volume}{42} + \field{year}{1999} \field{urldateera}{ce} - \field{pages}{1\bibrangedash 30} - \range{pages}{30} + \field{pages}{243\bibrangedash 249} + \range{pages}{7} \verb{doi} - \verb 10.1080/2374068X.2023.2220242 + \verb 10.1179/003258999665585 \endverb \verb{urlraw} - \verb https://doi.org/10.1080/2374068X.2023.2220242 + \verb https://journals.sagepub.com/action/showAbstract \endverb \verb{url} - \verb https://doi.org/10.1080/2374068X.2023.2220242 + \verb https://journals.sagepub.com/action/showAbstract \endverb - \keyw{Blending,Hiping,Mathematical model,Powder metallurgy,Stellite alloys,Structure-property relationships} \endentry \entry{bunchCorrosionGallingResistant1989}{inproceedings}{}{} \name{author}{3}{}{% @@ -316,16 +401,16 @@ \list{publisher}{1}{% {OnePetro}% } - \strng{namehash}{b4088224b2a9ea87c42c7ab641ebe2de} + \strng{namehash}{27ba512d074ac1ae4276e7a91ea23549} \strng{fullhash}{27ba512d074ac1ae4276e7a91ea23549} \strng{fullhashraw}{27ba512d074ac1ae4276e7a91ea23549} \strng{bibnamehash}{27ba512d074ac1ae4276e7a91ea23549} \strng{authorbibnamehash}{27ba512d074ac1ae4276e7a91ea23549} - \strng{authornamehash}{b4088224b2a9ea87c42c7ab641ebe2de} + \strng{authornamehash}{27ba512d074ac1ae4276e7a91ea23549} \strng{authorfullhash}{27ba512d074ac1ae4276e7a91ea23549} \strng{authorfullhashraw}{27ba512d074ac1ae4276e7a91ea23549} - \field{sortinit}{7} - \field{sortinithash}{108d0be1b1bee9773a1173443802c0a3} + \field{sortinit}{B} + \field{sortinithash}{d7095fff47cda75ca2589920aae98399} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{ABSTRACT. Application of corrosion resistant hardfacing materials are required to maintain exceptional reliability for metal to metal sealing in high pressure gate valves used for offshore production wells. New hardfacing materials have been developed and tailored for use where defense against degradation effects of high temperature, high pressure, H2S, C02, free sulfur and brine environments is required. Using a plasma transferred arc (PTA) weld process, new hardfacings of Stellite cobalt base materials have been successfully applied to nickel base alloy substrates. These hardfacings provide exceptional corrosion resistance over previously used materials produced by spray and fuse as well as high velocity combustion spray (} @@ -347,6 +432,502 @@ \verb https://dx.doi.org/10.4043/6070-MS \endverb \endentry + \entry{crookCobaltbaseAlloysResist1994}{article}{}{} + \name{author}{1}{}{% + {{hash=16985215fbfc4124567154cd4ca61487}{% + family={Crook}, + familyi={C\bibinitperiod}, + given={P}, + giveni={P\bibinitperiod}}}% + } + \strng{namehash}{16985215fbfc4124567154cd4ca61487} + \strng{fullhash}{16985215fbfc4124567154cd4ca61487} + \strng{fullhashraw}{16985215fbfc4124567154cd4ca61487} + \strng{bibnamehash}{16985215fbfc4124567154cd4ca61487} + \strng{authorbibnamehash}{16985215fbfc4124567154cd4ca61487} + \strng{authornamehash}{16985215fbfc4124567154cd4ca61487} + \strng{authorfullhash}{16985215fbfc4124567154cd4ca61487} + \strng{authorfullhashraw}{16985215fbfc4124567154cd4ca61487} + \field{sortinit}{C} + \field{sortinithash}{4d103a86280481745c9c897c925753c0} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{issn}{0882-7958} + \field{journaltitle}{Cobalt-base alloys resist wear, corrosion, and heat} + \field{note}{Place: Materials Park, OH Publisher: ASM International} + \field{number}{4} + \field{title}{Cobalt-base alloys resist wear, corrosion, and heat} + \field{volume}{145} + \field{year}{1994} + \field{pages}{27\bibrangedash 30} + \range{pages}{4} + \endentry + \entry{davis2000nickel}{book}{}{} + \name{author}{2}{}{% + {{hash=d24975e937cc4c8eafeb981d8d16a1d4}{% + family={Davis}, + familyi={D\bibinitperiod}, + given={J.R.}, + giveni={J\bibinitperiod}}}% + {{hash=2e482fdb03378296689bc75a76c2bdc4}{% + family={Committee}, + familyi={C\bibinitperiod}, + given={A.S.M.I.H.}, + giveni={A\bibinitperiod}}}% + } + \list{publisher}{1}{% + {ASM International}% + } + \strng{namehash}{ded5e703628bfa51629c3e9340068998} + \strng{fullhash}{ded5e703628bfa51629c3e9340068998} + \strng{fullhashraw}{ded5e703628bfa51629c3e9340068998} + \strng{bibnamehash}{ded5e703628bfa51629c3e9340068998} + \strng{authorbibnamehash}{ded5e703628bfa51629c3e9340068998} + \strng{authornamehash}{ded5e703628bfa51629c3e9340068998} + \strng{authorfullhash}{ded5e703628bfa51629c3e9340068998} + \strng{authorfullhashraw}{ded5e703628bfa51629c3e9340068998} + \field{sortinit}{D} + \field{sortinithash}{6f385f66841fb5e82009dc833c761848} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{isbn}{978-0-87170-685-0} + \field{note}{tex.lccn: 00059348} + \field{series}{{ASM} specialty handbook} + \field{title}{Nickel, cobalt, and their alloys} + \field{year}{2000} + \verb{urlraw} + \verb https://books.google.ae/books?id=IePhmnbmRWkC + \endverb + \verb{url} + \verb https://books.google.ae/books?id=IePhmnbmRWkC + \endverb + \endentry + \entry{desaiEffectCarbideSize1984}{article}{}{} + \name{author}{4}{}{% + {{hash=fc05df304d9bc11398a5c124af37591d}{% + family={Desai}, + familyi={D\bibinitperiod}, + given={V.\bibnamedelimi M.}, + giveni={V\bibinitperiod\bibinitdelim M\bibinitperiod}}}% + {{hash=ec550afc1e3aea4900fb58655a64f6da}{% + family={Rao}, + familyi={R\bibinitperiod}, + given={C.\bibnamedelimi M.}, + giveni={C\bibinitperiod\bibinitdelim M\bibinitperiod}}}% + {{hash=33b6be2f67c7c521e0d9dd2e94cb03fa}{% + family={Kosel}, + familyi={K\bibinitperiod}, + given={T.\bibnamedelimi H.}, + giveni={T\bibinitperiod\bibinitdelim H\bibinitperiod}}}% + {{hash=1ad7f5a75d8dc26e538ca7e4d233e622}{% + family={Fiore}, + familyi={F\bibinitperiod}, + given={N.\bibnamedelimi F.}, + giveni={N\bibinitperiod\bibinitdelim F\bibinitperiod}}}% + } + \strng{namehash}{aeae2b334e415789011cf05b2beda57d} + \strng{fullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} + \strng{fullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} + \strng{bibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} + \strng{authorbibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} + \strng{authornamehash}{aeae2b334e415789011cf05b2beda57d} + \strng{authorfullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} + \strng{authorfullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} + \field{sortinit}{D} + \field{sortinithash}{6f385f66841fb5e82009dc833c761848} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{A study of the effect of carbide size on the abrasion resistance of two cobalt-base powder metallurgy alloys, alloys 6 and 19, was conducted using low stress abrasion with a relatively hard abrasive, A12O3. Specimens of each alloy were produced with different carbide sizes but with a constant carbide volume fraction. The wear test results show a monotonie decrease in wear rate with increasing carbide size. Scanning electron microscopy of the worn surfaces and of wear debris particles shows that the primary material removal mechanism is micromachining. Small carbides provide little resistance to micromachining because of the fact that many of them are contained entirely in the volume of micromachining chips. The large carbides must be directly cut by the abrasive particles. Other less frequently observed material removal mechanisms included direct carbide pull-out and the formation of large pits in fine carbide specimens. These processes are considered secondary in the present work, but they may have greater importance in wear by relatively soft abrasives which do not cut chips from the carbide phase of these alloys. Some indication of this is provided by limited studies using a relatively soft abrasive, rounded quartz.} + \field{issn}{0043-1648} + \field{journaltitle}{Wear} + \field{month}{2} + \field{note}{59 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{number}{1} + \field{title}{Effect of carbide size on the abrasion of cobalt-base powder metallurgy alloys} + \field{urlday}{17} + \field{urlmonth}{11} + \field{urlyear}{2024} + \field{volume}{94} + \field{year}{1984} + \field{urldateera}{ce} + \field{pages}{89\bibrangedash 101} + \range{pages}{13} + \verb{doi} + \verb 10.1016/0043-1648(84)90168-6 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 + \endverb + \keyw{Cavitation,Cavitation equipment,Damage measurement,Instrumentation,Sodium} + \endentry + \entry{ferozhkhanMetallurgicalStudyStellite2017}{article}{}{} + \name{author}{3}{}{% + {{hash=bed071d3745587c303d1b4411281a295}{% + family={Ferozhkhan}, + familyi={F\bibinitperiod}, + given={Mohammed\bibnamedelima Mohaideen}, + giveni={M\bibinitperiod\bibinitdelim M\bibinitperiod}}}% + {{hash=fdb6a42317e0e10a267ce7c918a63e11}{% + family={Kumar}, + familyi={K\bibinitperiod}, + given={Kottaimathan\bibnamedelima Ganesh}, + giveni={K\bibinitperiod\bibinitdelim G\bibinitperiod}}}% + {{hash=250edfbd96cbc7ebd974dd11a2098198}{% + family={Ravibharath}, + familyi={R\bibinitperiod}, + given={Rajanbabu}, + giveni={R\bibinitperiod}}}% + } + \list{language}{1}{% + {en}% + } + \strng{namehash}{c63a5ee4b2edf1e71712795226de5b1a} + \strng{fullhash}{c63a5ee4b2edf1e71712795226de5b1a} + \strng{fullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} + \strng{bibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} + \strng{authorbibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} + \strng{authornamehash}{c63a5ee4b2edf1e71712795226de5b1a} + \strng{authorfullhash}{c63a5ee4b2edf1e71712795226de5b1a} + \strng{authorfullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} + \field{sortinit}{F} + \field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{309-16L stainless steel was deposited over base metal Grade 91 steel (9Cr–1Mo) as buffer layer by shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and flux cored arc welding processes, and then, Stellite 6 (Co–Cr alloy) was coated on stainless steel buffer by SMAW, GTAW and plasma transferred arc welding processes. Stellite 6 coatings were characterized using optical microscope, Vickers hardness tester and optical emission spectrometer, respectively. The FCA deposit has less heat-affected zone and uniform hardness than SMA and GTA deposits. The buffer layer has reduced the formation of any surface cracks and delamination near the fusion zones. The microstructure of Stellite 6 consists of dendrites of Co solid solution and carbides secretion in the interdendrites of Co and Cr matrix. Electron-dispersive spectroscopy line scan has been conducted to analyse the impact of alloying elements in the fusion line and Stellite 6 deposits. It was observed that dilution of Fe in PTA-deposited Stellite 6 was lesser than SMA and GTA deposits and uniform hardness of 600–650 \$\${\textbackslash}hbox \{HV\}\_\{0.3\}\$\$was obtained from PTA deposit. The chemical analysis resulted in alloy composition of PTA deposit has nominal percentage in comparison with consumable composition while GTA and SMA deposits has high dilution of Fe and Ni.} + \field{issn}{2191-4281} + \field{journaltitle}{Arabian Journal for Science and Engineering} + \field{month}{5} + \field{note}{0 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{number}{5} + \field{title}{Metallurgical {Study} of {Stellite} 6 {Cladding} on 309-{16L} {Stainless} {Steel}} + \field{urlday}{31} + \field{urlmonth}{3} + \field{urlyear}{2025} + \field{volume}{42} + \field{year}{2017} + \field{urldateera}{ce} + \field{pages}{2067\bibrangedash 2074} + \range{pages}{8} + \verb{doi} + \verb 10.1007/s13369-017-2457-7 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1007/s13369-017-2457-7 + \endverb + \verb{url} + \verb https://doi.org/10.1007/s13369-017-2457-7 + \endverb + \keyw{Dilution,EDS,Hardfacing,Interdendrites,Stellite} + \endentry + \entry{francCavitationErosion2005}{incollection}{}{} + \name{editor}{2}{}{% + {{hash=82466166f53e07ad9568dba9555563e7}{% + family={Franc}, + familyi={F\bibinitperiod}, + given={Jean-Pierre}, + giveni={J\bibinithyphendelim P\bibinitperiod}}}% + {{hash=441eced1863753c712f0eaa788cbc3d5}{% + family={Michel}, + familyi={M\bibinitperiod}, + given={Jean-Marie}, + giveni={J\bibinithyphendelim M\bibinitperiod}}}% + } + \list{language}{1}{% + {en}% + } + \list{location}{1}{% + {Dordrecht}% + } + \list{publisher}{1}{% + {Springer Netherlands}% + } + \strng{namehash}{9ef3cd89643a1a5e288c68eb93b9390c} + \strng{fullhash}{9ef3cd89643a1a5e288c68eb93b9390c} + \strng{fullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} + \strng{bibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} + \strng{editorbibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} + \strng{editornamehash}{9ef3cd89643a1a5e288c68eb93b9390c} + \strng{editorfullhash}{9ef3cd89643a1a5e288c68eb93b9390c} + \strng{editorfullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} + \field{sortinit}{F} + \field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4} + \field{labelnamesource}{editor} + \field{labeltitlesource}{title} + \field{booktitle}{Fundamentals of {Cavitation}} + \field{isbn}{978-1-4020-2233-3} + \field{title}{Cavitation {Erosion}} + \field{urlday}{13} + \field{urlmonth}{4} + \field{urlyear}{2025} + \field{year}{2005} + \field{urldateera}{ce} + \field{pages}{265\bibrangedash 291} + \range{pages}{27} + \verb{doi} + \verb 10.1007/1-4020-2233-6_12 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1007/1-4020-2233-6_12 + \endverb + \verb{url} + \verb https://doi.org/10.1007/1-4020-2233-6_12 + \endverb + \keyw{Acoustic Impedance,Adverse Pressure Gradient,Mass Loss Rate,Pressure Pulse,Solid Wall} + \endentry + \entry{gevariDirectIndirectThermal2020}{article}{}{} + \name{author}{5}{}{% + {{hash=93d9cff817608f96c206941face4c5d7}{% + family={Gevari}, + familyi={G\bibinitperiod}, + given={Moein\bibnamedelima Talebian}, + giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod}}}% + {{hash=e271948379fd6fee4bd30a4d576761b8}{% + family={Abbasiasl}, + familyi={A\bibinitperiod}, + given={Taher}, + giveni={T\bibinitperiod}}}% + {{hash=67d0558f57dbf7548b5b43a80b85f47f}{% + family={Niazi}, + familyi={N\bibinitperiod}, + given={Soroush}, + giveni={S\bibinitperiod}}}% + {{hash=efb87c095e41c6349ba97d939982e130}{% + family={Ghorbani}, + familyi={G\bibinitperiod}, + given={Morteza}, + giveni={M\bibinitperiod}}}% + {{hash=311cf929c32c6c2ce5aa2728ae09ad47}{% + family={Koşar}, + familyi={K\bibinitperiod}, + given={Ali}, + giveni={A\bibinitperiod}}}% + } + \strng{namehash}{76843143b68c90c6ac5d9d854fd56c1f} + \strng{fullhash}{7e654139b427bf36f3a25a5848105f5b} + \strng{fullhashraw}{7e654139b427bf36f3a25a5848105f5b} + \strng{bibnamehash}{7e654139b427bf36f3a25a5848105f5b} + \strng{authorbibnamehash}{7e654139b427bf36f3a25a5848105f5b} + \strng{authornamehash}{76843143b68c90c6ac5d9d854fd56c1f} + \strng{authorfullhash}{7e654139b427bf36f3a25a5848105f5b} + \strng{authorfullhashraw}{7e654139b427bf36f3a25a5848105f5b} + \field{sortinit}{G} + \field{sortinithash}{32d67eca0634bf53703493fb1090a2e8} + \field{labelnamesource}{author} + \field{labeltitlesource}{shorttitle} + \field{abstract}{The phase change phenomenon in fluids as a result of low local pressure under a critical value is known as cavitation. Acoustic wave propagation or hydrodynamic pressure drop of the working fluid are the main reasons for inception of this phenomenon. Considering the released energy from the collapsing cavitation bubbles as a reliable source has led to its implementation to different fields, namely, heat transfer, surface cleaning and fouling, water treatment, food industry, chemical reactions, energy harvesting. A considerable amount of energy in the mentioned industries is required for thermal applications. Cavitation could serve for minimizing the energy demand and optimizing the processes. Thus, the energy efficiency of the systems could be significantly enhanced. This review article focuses on the direct and indirect thermal applications of hydrodynamic and acoustic cavitation. Relevant studies with emerging applications are discussed, while developments in cavitation, which have given rise to thermal applications during the last decade, are also included in this review.} + \field{issn}{1359-4311} + \field{journaltitle}{Applied Thermal Engineering} + \field{month}{5} + \field{note}{84 citations (Semantic Scholar/DOI) [2025-04-13]} + \field{shorttitle}{Direct and indirect thermal applications of hydrodynamic and acoustic cavitation} + \field{title}{Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: {A} review} + \field{urlday}{13} + \field{urlmonth}{4} + \field{urlyear}{2025} + \field{volume}{171} + \field{year}{2020} + \field{urldateera}{ce} + \field{pages}{115065} + \range{pages}{1} + \verb{doi} + \verb 10.1016/j.applthermaleng.2020.115065 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X + \endverb + \keyw{Acoustic cavitation,Food industry,Heat transfer enhancement,Hydrodynamic cavitation,Water treatment} + \endentry + \entry{huangMicrostructureEvolutionMartensite2023}{article}{}{} + \name{author}{6}{}{% + {{hash=55328195d8b2c0f90f11e12f5ddb7d65}{% + family={Huang}, + familyi={H\bibinitperiod}, + given={Zonglian}, + giveni={Z\bibinitperiod}}}% + {{hash=2938deb5048323c6e1bfdd80975d5b28}{% + family={Wang}, + familyi={W\bibinitperiod}, + given={Bo}, + giveni={B\bibinitperiod}}}% + {{hash=0138deaf332692ced30d823b9cebc488}{% + family={Liu}, + familyi={L\bibinitperiod}, + given={Fei}, + giveni={F\bibinitperiod}}}% + {{hash=92c4cc87ddf9f0a5abb5ff8d5b8878d4}{% + family={Song}, + familyi={S\bibinitperiod}, + given={Min}, + giveni={M\bibinitperiod}}}% + {{hash=971be18e8809118d44c885580820c916}{% + family={Ni}, + familyi={N\bibinitperiod}, + given={Song}, + giveni={S\bibinitperiod}}}% + {{hash=eb96d2754cddae273dd482f087734e31}{% + family={Liu}, + familyi={L\bibinitperiod}, + given={Shaojun}, + giveni={S\bibinitperiod}}}% + } + \strng{namehash}{61779e4ce456f415f5dc118db21bed83} + \strng{fullhash}{8ca9ebea09cf1f645c339306001d45ac} + \strng{fullhashraw}{8ca9ebea09cf1f645c339306001d45ac} + \strng{bibnamehash}{8ca9ebea09cf1f645c339306001d45ac} + \strng{authorbibnamehash}{8ca9ebea09cf1f645c339306001d45ac} + \strng{authornamehash}{61779e4ce456f415f5dc118db21bed83} + \strng{authorfullhash}{8ca9ebea09cf1f645c339306001d45ac} + \strng{authorfullhashraw}{8ca9ebea09cf1f645c339306001d45ac} + \field{sortinit}{H} + \field{sortinithash}{23a3aa7c24e56cfa16945d55545109b5} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{The influence of laser energy density and heat treatment on the microstructure and properties of Co-Cr-Mo-W alloys fabricated by selective laser melting (SLM) are investigated symmetrically. When the laser power, the scanning speed, and the scanning space are set as 160 W, 400 mm/s, and 0.07 mm, respectively, the SLM-ed Co-Cr-Mo-W alloys display high strength and good ductility simultaneously. The precipitates ranging from nano- to macro- scale are finely distributed in SLM-ed CoCr alloys grains and/or along the grain boundaries in the heat treated alloys. Co-Cr-Mo-W alloys with an excellent combination of strength and ductility can be achieved by tailoring the microstructure and morphology of SLM-ed alloys during the heat treatment. The tensile strength, yield strength, and elongation are 1221.38 ± 10 MPa, 778.81 ± 12 MPa, and 17.2 ± 0.67\%, respectively.} + \field{issn}{0263-4368} + \field{journaltitle}{International Journal of Refractory Metals and Hard Materials} + \field{month}{6} + \field{title}{Microstructure evolution, martensite transformation and mechanical properties of heat treated {Co}-{Cr}-{Mo}-{W} alloys by selective laser melting} + \field{urlday}{13} + \field{urlmonth}{4} + \field{urlyear}{2025} + \field{volume}{113} + \field{year}{2023} + \field{urldateera}{ce} + \field{pages}{106170} + \range{pages}{1} + \verb{doi} + \verb 10.1016/j.ijrmhm.2023.106170 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 + \endverb + \keyw{Co–Cr–Mo-W alloys,Heat treatment,Martensite phase transformation,Mechanical properties,Selective laser melting} + \endentry + \entry{malayogluComparingPerformanceHIPed2003}{article}{}{} + \name{author}{2}{}{% + {{hash=71f57eb10950396ed3fa62c703ddaee5}{% + family={Malayoglu}, + familyi={M\bibinitperiod}, + given={U.}, + giveni={U\bibinitperiod}}}% + {{hash=c00a172220606f67c3da2492047a9b71}{% + family={Neville}, + familyi={N\bibinitperiod}, + given={A.}, + giveni={A\bibinitperiod}}}% + } + \strng{namehash}{49054a18ed24a57daa4c3278c94c6ce5} + \strng{fullhash}{49054a18ed24a57daa4c3278c94c6ce5} + \strng{fullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} + \strng{bibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} + \strng{authorbibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} + \strng{authornamehash}{49054a18ed24a57daa4c3278c94c6ce5} + \strng{authorfullhash}{49054a18ed24a57daa4c3278c94c6ce5} + \strng{authorfullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} + \field{sortinit}{M} + \field{sortinithash}{4625c616857f13d17ce56f7d4f97d451} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{In this paper, results from erosion–corrosion tests performed under liquid–solid erosion conditions in 3.5\% NaCl liquid medium are reported. The focus of the paper is to compare the behaviour of Cast and Hot Isostatically Pressed (HIPed) Stellite 6 alloy in terms of their electrochemical corrosion characteristics, their resistance to mechanical degradation and relationship between microstructure and degradation mechanisms. It has been shown that HIPed Stellite 6 possesses better erosion and erosion corrosion resistance than that of Cast Stellite 6 and two stainless steels (UNS S32760 and UNS S31603) under the same solid loading (200 and 500mg/l), and same temperature (20 and 50°C). The material removal mechanisms have been identified by using atomic force microscopy (AFM) and shown preferential removal of the Co-rich matrix to be less extensive on the HIPed material.} + \field{issn}{0043-1648} + \field{journaltitle}{Wear} + \field{month}{8} + \field{note}{34 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{number}{1} + \field{series}{14th {International} {Conference} on {Wear} of {Materials}} + \field{title}{Comparing the performance of {HIPed} and {Cast} {Stellite} 6 alloy in liquid–solid slurries} + \field{urlday}{17} + \field{urlmonth}{2} + \field{urlyear}{2025} + \field{volume}{255} + \field{year}{2003} + \field{urldateera}{ce} + \field{pages}{181\bibrangedash 194} + \range{pages}{14} + \verb{doi} + \verb 10.1016/S0043-1648(03)00287-4 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 + \endverb + \keyw{Cast Stellite 6,Corrosion,Erosion,HIPed,Liquid–solid slurries} + \endentry + \entry{pacquentinTemperatureInfluenceRepair2025}{article}{}{} + \name{author}{5}{}{% + {{hash=096b7ba62dd31bb3abb4c7daa2ba6477}{% + family={Pacquentin}, + familyi={P\bibinitperiod}, + given={Wilfried}, + giveni={W\bibinitperiod}}}% + {{hash=9e420ee86aa957c365d57085e999996c}{% + family={Wident}, + familyi={W\bibinitperiod}, + given={Pierre}, + giveni={P\bibinitperiod}}}% + {{hash=268ededdba463184d10a8f5532d5cf81}{% + family={Varlet}, + familyi={V\bibinitperiod}, + given={Jérôme}, + giveni={J\bibinitperiod}}}% + {{hash=b24f3669f2a577f8062abf9d04e0e179}{% + family={Cailloux}, + familyi={C\bibinitperiod}, + given={Thomas}, + giveni={T\bibinitperiod}}}% + {{hash=ba3f789128096170532622dc53c3bbd0}{% + family={Maskrot}, + familyi={M\bibinitperiod}, + given={Hicham}, + giveni={H\bibinitperiod}}}% + } + \strng{namehash}{f57606f1b71f32267dc7727ee385b008} + \strng{fullhash}{0cc41d1605707534d43f79ae97691cbc} + \strng{fullhashraw}{0cc41d1605707534d43f79ae97691cbc} + \strng{bibnamehash}{0cc41d1605707534d43f79ae97691cbc} + \strng{authorbibnamehash}{0cc41d1605707534d43f79ae97691cbc} + \strng{authornamehash}{f57606f1b71f32267dc7727ee385b008} + \strng{authorfullhash}{0cc41d1605707534d43f79ae97691cbc} + \strng{authorfullhashraw}{0cc41d1605707534d43f79ae97691cbc} + \field{sortinit}{P} + \field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{Additive manufacturing (AM) is a proven time- and cost-effective method for repairing parts locally damaged after e.g. repetitive friction wear or corrosion. Repairing a hardfacing coating using AM technologies presents however several simultaneous challenges arising from the complex geometry and a high probability of crack formation due to process-induced stress. We address the repair of a cobalt-based Stellite™ 6 hardfacing coating on an AISI 316L substrate performed using Laser Powder Directed Energy Deposition (LP-DED) and investigate the influence of key process features and parameters. We describe our process which successfully prevents crack formation both during and after the repair, highlighting the design of the preliminary part machining phase, induction heating of an extended part volume during the laser repair phase and the optimal scanning strategy. Local characterization using non-destructive testing, Vickers hardness measurements and microstructural examinations by scanning electron microscopy (SEM) show an excellent metallurgical quality of the repair and its interface with the original part. In addition, we introduce an innovative process qualification test assessing the repair quality and innocuity, which is based on the global response to induced cracks and probes the absence of crack attraction by the repair (ACAR11ACAR stands for absence of crack attraction by the repair.). Here this ACAR test reveals a slight difference in mechanical behavior between the repair and the original coating which motivates further work to eventually make the repair imperceptible.} + \field{issn}{2666-3309} + \field{journaltitle}{Journal of Advanced Joining Processes} + \field{month}{6} + \field{title}{Temperature influence on the repair of a hardfacing coating using laser metal deposition and assessment of the repair innocuity} + \field{urlday}{31} + \field{urlmonth}{3} + \field{urlyear}{2025} + \field{volume}{11} + \field{year}{2025} + \field{urldateera}{ce} + \field{pages}{100284} + \range{pages}{1} + \verb{doi} + \verb 10.1016/j.jajp.2025.100284 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 + \endverb + \keyw{Additive manufacturing,Direct laser deposition,Hardfacing coating,Mechanical characterization,Repair,Repair innocuity assessment} + \endentry \entry{ratiaComparisonSlidingWear2019}{article}{}{} \name{author}{7}{}{% {{hash=4d8d77bd60a2e1fd293e809631bc5a84}{% @@ -393,8 +974,8 @@ \strng{authornamehash}{0f5fdf8e51bf5515e4025351773003d8} \strng{authorfullhash}{2e0376be46be3b8d245d5ab5620f4ca2} \strng{authorfullhashraw}{2e0376be46be3b8d245d5ab5620f4ca2} - \field{sortinit}{8} - \field{sortinithash}{a231b008ebf0ecbe0b4d96dcc159445f} + \field{sortinit}{R} + \field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Cobalt-based alloys such as Stellite 3 and Stellite 6 are widely used to protect stainless steel surfaces in primary circuit nuclear reactor applications where high resistance to wear and corrosion are required. In this study, self-mated sliding wear of Stellite 3 and Stellite 6 consolidated by hot isostatic pressing were compared. Tests were performed with a pin-on-disc apparatus enclosed in a water-submerged autoclave environment and wear was measured from room temperature up to 250 °C (a representative pressurized water reactor environment). Both alloys exhibit a microstructure of micron-sized carbides embedded in a cobalt-rich matrix. Stellite 3 (higher tungsten and carbon content) contains M7C3 and an eta (η) -carbide whereas Stellite 6 contains only M7C3. Furthermore, the former has a significantly higher carbide volume fraction and hardness than the latter. Both alloys show a significant increase in the wear rate as the temperature is increased but Stellite 3 has a higher wear resistance over the entire range; at 250 °C the wear rate of Stellite 6 is more than five times that of Stellite 3. There is only a minimal formation of a transfer layer on the sliding surfaces but electron backscatter diffraction on cross-sections through the wear scar revealed that wear causes partial transformation of the cobalt matrix from fcc to hcp in both alloys over the entire temperature range. It is proposed that the acceleration of wear with increasing temperature in the range studied is associated with a tribocorrosion mechanism and that the higher carbide fraction in Stellite 3 resulted in its reduced wear rate compared to Stellite 6.} @@ -423,354 +1004,6 @@ \endverb \keyw{Cobalt-based alloys,Electron backscatter diffraction,HIP,Nuclear,Stellite} \endentry - \entry{zhangFrictionWearCharacterization2002}{article}{}{} - \name{author}{2}{}{% - {{hash=9ac5c6e1891a9d327b6cf9dce9924eaa}{% - family={Zhang}, - familyi={Z\bibinitperiod}, - given={K}, - giveni={K\bibinitperiod}}}% - {{hash=cb8741204d7e12b6db11ee35f025c97c}{% - family={Battiston}, - familyi={B\bibinitperiod}, - given={L}, - giveni={L\bibinitperiod}}}% - } - \strng{namehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{fullhash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{fullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{bibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authorbibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authornamehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authorfullhash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authorfullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} - \field{sortinit}{1} - \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{A full-journal submerged bearing test rig was built to evaluate the friction and wear behavior of materials in zinc alloy baths. Some cobalt- and iron-based superalloys were tested using this rig at conditions similar to those of a continuous galvanizing operation (load and bath chemistry). Metallographic and chemical analyses were conducted on tested samples to characterize the wear. It was found that a commonly used cobalt-based material (Stellite \#6) not only suffered considerable wear but also reacted with zinc baths to form intermetallic compounds. Other cobalt- and iron-based superalloys appeared to have negligible reaction with the zinc baths in the short-term tests, but cracks developed in the sub-surface, suggesting that the materials mainly experienced surface fatigue wear. The commonly used cobalt-based superalloy mostly experienced abrasive wear.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{2} - \field{note}{33 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{3} - \field{title}{Friction and wear characterization of some cobalt- and iron-based superalloys in zinc alloy baths} - \field{urlday}{1} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{252} - \field{year}{2002} - \field{urldateera}{ce} - \field{pages}{332\bibrangedash 344} - \range{pages}{13} - \verb{doi} - \verb 10.1016/S0043-1648(01)00889-4 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 - \endverb - \keyw{Friction and wear,Galvanizing,Submerged hardware,Superalloys} - \endentry - \entry{ashworthMicrostructurePropertyRelationships1999}{article}{}{} - \name{author}{3}{}{% - {{hash=a0a9668f5a93080c8425a8cf80e9d0d2}{% - family={Ashworth}, - familyi={A\bibinitperiod}, - given={M.A.}, - giveni={M\bibinitperiod}}}% - {{hash=27753a82b6390957cb920ec5052f0810}{% - family={Jacobs}, - familyi={J\bibinitperiod}, - given={M.H.}, - giveni={M\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \list{language}{1}{% - {EN}% - } - \strng{namehash}{abac9b3a3bd887c0c8dedb4a4e169c92} - \strng{fullhash}{68dce5901af799f73fc399cf947f81b9} - \strng{fullhashraw}{68dce5901af799f73fc399cf947f81b9} - \strng{bibnamehash}{68dce5901af799f73fc399cf947f81b9} - \strng{authorbibnamehash}{68dce5901af799f73fc399cf947f81b9} - \strng{authornamehash}{abac9b3a3bd887c0c8dedb4a4e169c92} - \strng{authorfullhash}{68dce5901af799f73fc399cf947f81b9} - \strng{authorfullhashraw}{68dce5901af799f73fc399cf947f81b9} - \field{sortinit}{1} - \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{In the present paper the microstructure and properties of a range of hipped Stellite powders are investigated, the basic aim of the study being to generate a materia/property database to facilitate alloy selection for potential applications involving net shape component manufacture. Particular attention is paid to the morphology, particle size distribution, and surface composition of the as atomised powders and their effect on subsequent consolidation. The consolidated powders are fully characterised in terms of microstructure and the composition and distribution of secondary phases. The effect of hipping temperature on the microstructure, hardness, and tensile properties of the powders are discussed in terms of the optimum processing temperature for the various alloys.} - \field{issn}{0032-5899} - \field{journaltitle}{Powder Metallurgy} - \field{month}{3} - \field{note}{23 citations (Semantic Scholar/DOI) [2025-04-12] Publisher: SAGE Publications} - \field{number}{3} - \field{title}{Microstructure and property relationships in hipped {Stellite} powders} - \field{urlday}{3} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{42} - \field{year}{1999} - \field{urldateera}{ce} - \field{pages}{243\bibrangedash 249} - \range{pages}{7} - \verb{doi} - \verb 10.1179/003258999665585 - \endverb - \verb{urlraw} - \verb https://journals.sagepub.com/action/showAbstract - \endverb - \verb{url} - \verb https://journals.sagepub.com/action/showAbstract - \endverb - \endentry - \entry{ferozhkhanMetallurgicalStudyStellite2017}{article}{}{} - \name{author}{3}{}{% - {{hash=bed071d3745587c303d1b4411281a295}{% - family={Ferozhkhan}, - familyi={F\bibinitperiod}, - given={Mohammed\bibnamedelima Mohaideen}, - giveni={M\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=fdb6a42317e0e10a267ce7c918a63e11}{% - family={Kumar}, - familyi={K\bibinitperiod}, - given={Kottaimathan\bibnamedelima Ganesh}, - giveni={K\bibinitperiod\bibinitdelim G\bibinitperiod}}}% - {{hash=250edfbd96cbc7ebd974dd11a2098198}{% - family={Ravibharath}, - familyi={R\bibinitperiod}, - given={Rajanbabu}, - giveni={R\bibinitperiod}}}% - } - \list{language}{1}{% - {en}% - } - \strng{namehash}{7a694c7ba4c57888494ddc3675c7d70c} - \strng{fullhash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{fullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{bibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{authorbibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{authornamehash}{7a694c7ba4c57888494ddc3675c7d70c} - \strng{authorfullhash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{authorfullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} - \field{sortinit}{1} - \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{309-16L stainless steel was deposited over base metal Grade 91 steel (9Cr–1Mo) as buffer layer by shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and flux cored arc welding processes, and then, Stellite 6 (Co–Cr alloy) was coated on stainless steel buffer by SMAW, GTAW and plasma transferred arc welding processes. Stellite 6 coatings were characterized using optical microscope, Vickers hardness tester and optical emission spectrometer, respectively. The FCA deposit has less heat-affected zone and uniform hardness than SMA and GTA deposits. The buffer layer has reduced the formation of any surface cracks and delamination near the fusion zones. The microstructure of Stellite 6 consists of dendrites of Co solid solution and carbides secretion in the interdendrites of Co and Cr matrix. Electron-dispersive spectroscopy line scan has been conducted to analyse the impact of alloying elements in the fusion line and Stellite 6 deposits. It was observed that dilution of Fe in PTA-deposited Stellite 6 was lesser than SMA and GTA deposits and uniform hardness of 600–650 \$\${\textbackslash}hbox \{HV\}\_\{0.3\}\$\$was obtained from PTA deposit. The chemical analysis resulted in alloy composition of PTA deposit has nominal percentage in comparison with consumable composition while GTA and SMA deposits has high dilution of Fe and Ni.} - \field{issn}{2191-4281} - \field{journaltitle}{Arabian Journal for Science and Engineering} - \field{month}{5} - \field{note}{0 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{5} - \field{title}{Metallurgical {Study} of {Stellite} 6 {Cladding} on 309-{16L} {Stainless} {Steel}} - \field{urlday}{31} - \field{urlmonth}{3} - \field{urlyear}{2025} - \field{volume}{42} - \field{year}{2017} - \field{urldateera}{ce} - \field{pages}{2067\bibrangedash 2074} - \range{pages}{8} - \verb{doi} - \verb 10.1007/s13369-017-2457-7 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1007/s13369-017-2457-7 - \endverb - \verb{url} - \verb https://doi.org/10.1007/s13369-017-2457-7 - \endverb - \keyw{Dilution,EDS,Hardfacing,Interdendrites,Stellite} - \endentry - \entry{pacquentinTemperatureInfluenceRepair2025}{article}{}{} - \name{author}{5}{}{% - {{hash=096b7ba62dd31bb3abb4c7daa2ba6477}{% - family={Pacquentin}, - familyi={P\bibinitperiod}, - given={Wilfried}, - giveni={W\bibinitperiod}}}% - {{hash=9e420ee86aa957c365d57085e999996c}{% - family={Wident}, - familyi={W\bibinitperiod}, - given={Pierre}, - giveni={P\bibinitperiod}}}% - {{hash=268ededdba463184d10a8f5532d5cf81}{% - family={Varlet}, - familyi={V\bibinitperiod}, - given={Jérôme}, - giveni={J\bibinitperiod}}}% - {{hash=b24f3669f2a577f8062abf9d04e0e179}{% - family={Cailloux}, - familyi={C\bibinitperiod}, - given={Thomas}, - giveni={T\bibinitperiod}}}% - {{hash=ba3f789128096170532622dc53c3bbd0}{% - family={Maskrot}, - familyi={M\bibinitperiod}, - given={Hicham}, - giveni={H\bibinitperiod}}}% - } - \strng{namehash}{f57606f1b71f32267dc7727ee385b008} - \strng{fullhash}{0cc41d1605707534d43f79ae97691cbc} - \strng{fullhashraw}{0cc41d1605707534d43f79ae97691cbc} - \strng{bibnamehash}{0cc41d1605707534d43f79ae97691cbc} - \strng{authorbibnamehash}{0cc41d1605707534d43f79ae97691cbc} - \strng{authornamehash}{f57606f1b71f32267dc7727ee385b008} - \strng{authorfullhash}{0cc41d1605707534d43f79ae97691cbc} - \strng{authorfullhashraw}{0cc41d1605707534d43f79ae97691cbc} - \field{sortinit}{2} - \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{Additive manufacturing (AM) is a proven time- and cost-effective method for repairing parts locally damaged after e.g. repetitive friction wear or corrosion. Repairing a hardfacing coating using AM technologies presents however several simultaneous challenges arising from the complex geometry and a high probability of crack formation due to process-induced stress. We address the repair of a cobalt-based Stellite™ 6 hardfacing coating on an AISI 316L substrate performed using Laser Powder Directed Energy Deposition (LP-DED) and investigate the influence of key process features and parameters. We describe our process which successfully prevents crack formation both during and after the repair, highlighting the design of the preliminary part machining phase, induction heating of an extended part volume during the laser repair phase and the optimal scanning strategy. Local characterization using non-destructive testing, Vickers hardness measurements and microstructural examinations by scanning electron microscopy (SEM) show an excellent metallurgical quality of the repair and its interface with the original part. In addition, we introduce an innovative process qualification test assessing the repair quality and innocuity, which is based on the global response to induced cracks and probes the absence of crack attraction by the repair (ACAR11ACAR stands for absence of crack attraction by the repair.). Here this ACAR test reveals a slight difference in mechanical behavior between the repair and the original coating which motivates further work to eventually make the repair imperceptible.} - \field{issn}{2666-3309} - \field{journaltitle}{Journal of Advanced Joining Processes} - \field{month}{6} - \field{title}{Temperature influence on the repair of a hardfacing coating using laser metal deposition and assessment of the repair innocuity} - \field{urlday}{31} - \field{urlmonth}{3} - \field{urlyear}{2025} - \field{volume}{11} - \field{year}{2025} - \field{urldateera}{ce} - \field{pages}{100284} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.jajp.2025.100284 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 - \endverb - \keyw{Additive manufacturing,Direct laser deposition,Hardfacing coating,Mechanical characterization,Repair,Repair innocuity assessment} - \endentry - \entry{desaiEffectCarbideSize1984}{article}{}{} - \name{author}{4}{}{% - {{hash=fc05df304d9bc11398a5c124af37591d}{% - family={Desai}, - familyi={D\bibinitperiod}, - given={V.\bibnamedelimi M.}, - giveni={V\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=ec550afc1e3aea4900fb58655a64f6da}{% - family={Rao}, - familyi={R\bibinitperiod}, - given={C.\bibnamedelimi M.}, - giveni={C\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=33b6be2f67c7c521e0d9dd2e94cb03fa}{% - family={Kosel}, - familyi={K\bibinitperiod}, - given={T.\bibnamedelimi H.}, - giveni={T\bibinitperiod\bibinitdelim H\bibinitperiod}}}% - {{hash=1ad7f5a75d8dc26e538ca7e4d233e622}{% - family={Fiore}, - familyi={F\bibinitperiod}, - given={N.\bibnamedelimi F.}, - giveni={N\bibinitperiod\bibinitdelim F\bibinitperiod}}}% - } - \strng{namehash}{aeae2b334e415789011cf05b2beda57d} - \strng{fullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{fullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{bibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{authorbibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{authornamehash}{aeae2b334e415789011cf05b2beda57d} - \strng{authorfullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{authorfullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \field{sortinit}{2} - \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{A study of the effect of carbide size on the abrasion resistance of two cobalt-base powder metallurgy alloys, alloys 6 and 19, was conducted using low stress abrasion with a relatively hard abrasive, A12O3. Specimens of each alloy were produced with different carbide sizes but with a constant carbide volume fraction. The wear test results show a monotonie decrease in wear rate with increasing carbide size. Scanning electron microscopy of the worn surfaces and of wear debris particles shows that the primary material removal mechanism is micromachining. Small carbides provide little resistance to micromachining because of the fact that many of them are contained entirely in the volume of micromachining chips. The large carbides must be directly cut by the abrasive particles. Other less frequently observed material removal mechanisms included direct carbide pull-out and the formation of large pits in fine carbide specimens. These processes are considered secondary in the present work, but they may have greater importance in wear by relatively soft abrasives which do not cut chips from the carbide phase of these alloys. Some indication of this is provided by limited studies using a relatively soft abrasive, rounded quartz.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{2} - \field{note}{59 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{1} - \field{title}{Effect of carbide size on the abrasion of cobalt-base powder metallurgy alloys} - \field{urlday}{17} - \field{urlmonth}{11} - \field{urlyear}{2024} - \field{volume}{94} - \field{year}{1984} - \field{urldateera}{ce} - \field{pages}{89\bibrangedash 101} - \range{pages}{13} - \verb{doi} - \verb 10.1016/0043-1648(84)90168-6 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 - \endverb - \keyw{Cavitation,Cavitation equipment,Damage measurement,Instrumentation,Sodium} - \endentry - \entry{francCavitationErosion2005}{incollection}{}{} - \name{editor}{2}{}{% - {{hash=82466166f53e07ad9568dba9555563e7}{% - family={Franc}, - familyi={F\bibinitperiod}, - given={Jean-Pierre}, - giveni={J\bibinithyphendelim P\bibinitperiod}}}% - {{hash=441eced1863753c712f0eaa788cbc3d5}{% - family={Michel}, - familyi={M\bibinitperiod}, - given={Jean-Marie}, - giveni={J\bibinithyphendelim M\bibinitperiod}}}% - } - \list{language}{1}{% - {en}% - } - \list{location}{1}{% - {Dordrecht}% - } - \list{publisher}{1}{% - {Springer Netherlands}% - } - \strng{namehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{fullhash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{fullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{bibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editorbibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editornamehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editorfullhash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editorfullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} - \field{sortinit}{4} - \field{sortinithash}{9381316451d1b9788675a07e972a12a7} - \field{labelnamesource}{editor} - \field{labeltitlesource}{title} - \field{booktitle}{Fundamentals of {Cavitation}} - \field{isbn}{978-1-4020-2233-3} - \field{title}{Cavitation {Erosion}} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{year}{2005} - \field{urldateera}{ce} - \field{pages}{265\bibrangedash 291} - \range{pages}{27} - \verb{doi} - \verb 10.1007/1-4020-2233-6_12 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1007/1-4020-2233-6_12 - \endverb - \verb{url} - \verb https://doi.org/10.1007/1-4020-2233-6_12 - \endverb - \keyw{Acoustic Impedance,Adverse Pressure Gradient,Mass Loss Rate,Pressure Pulse,Solid Wall} - \endentry \entry{romoCavitationHighvelocitySlurry2012}{article}{}{} \name{author}{4}{}{% {{hash=abd07783347fdc165942b01479e16afb}{% @@ -805,8 +1038,8 @@ \strng{authornamehash}{285bcf9d2b83436d537b5e21b7fde046} \strng{authorfullhash}{e0312588d226589c879f5d182ca350e9} \strng{authorfullhashraw}{e0312588d226589c879f5d182ca350e9} - \field{sortinit}{4} - \field{sortinithash}{9381316451d1b9788675a07e972a12a7} + \field{sortinit}{R} + \field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The cavitation and slurry erosion resistances of Stellite 6 coatings and 13-4 stainless steel were compared in laboratory. The Cavitation Resistance (CR) was measured according to ASTM G32 standard and the Slurry Erosion Resistance (SER) was tested in a high-velocity erosion tester under several impact angles. The results showed that the coatings improved the CR 15 times when compared to bare stainless steel. The SER of the coatings was also higher for all the impingement angles tested, the highest erosion rate being observed at 45°. The main wear mechanisms were micro-cracking (cavitation tests), and micro-cutting and micro-ploughing (slurry erosion tests). © 2011 Elsevier Ltd. All rights reserved.} @@ -829,72 +1062,6 @@ \endverb \keyw{Cavitation,Cavitation corrosion,Cavitation erosion,Cavitation resistance,Cerium alloys,Chromate coatings,Erosion,Erosion rates,High velocity,Impact angles,Impact resistance,Impingement angle,Micro-cutting,Slurry erosion,Stainless steel,Stellite,Stellite 6,Stellite 6 alloy,Stellite 6 coating,Tribology,Wear mechanisms,alloy} \endentry - \entry{gevariDirectIndirectThermal2020}{article}{}{} - \name{author}{5}{}{% - {{hash=93d9cff817608f96c206941face4c5d7}{% - family={Gevari}, - familyi={G\bibinitperiod}, - given={Moein\bibnamedelima Talebian}, - giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod}}}% - {{hash=e271948379fd6fee4bd30a4d576761b8}{% - family={Abbasiasl}, - familyi={A\bibinitperiod}, - given={Taher}, - giveni={T\bibinitperiod}}}% - {{hash=67d0558f57dbf7548b5b43a80b85f47f}{% - family={Niazi}, - familyi={N\bibinitperiod}, - given={Soroush}, - giveni={S\bibinitperiod}}}% - {{hash=efb87c095e41c6349ba97d939982e130}{% - family={Ghorbani}, - familyi={G\bibinitperiod}, - given={Morteza}, - giveni={M\bibinitperiod}}}% - {{hash=311cf929c32c6c2ce5aa2728ae09ad47}{% - family={Koşar}, - familyi={K\bibinitperiod}, - given={Ali}, - giveni={A\bibinitperiod}}}% - } - \strng{namehash}{76843143b68c90c6ac5d9d854fd56c1f} - \strng{fullhash}{7e654139b427bf36f3a25a5848105f5b} - \strng{fullhashraw}{7e654139b427bf36f3a25a5848105f5b} - \strng{bibnamehash}{7e654139b427bf36f3a25a5848105f5b} - \strng{authorbibnamehash}{7e654139b427bf36f3a25a5848105f5b} - \strng{authornamehash}{76843143b68c90c6ac5d9d854fd56c1f} - \strng{authorfullhash}{7e654139b427bf36f3a25a5848105f5b} - \strng{authorfullhashraw}{7e654139b427bf36f3a25a5848105f5b} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{shorttitle} - \field{abstract}{The phase change phenomenon in fluids as a result of low local pressure under a critical value is known as cavitation. Acoustic wave propagation or hydrodynamic pressure drop of the working fluid are the main reasons for inception of this phenomenon. Considering the released energy from the collapsing cavitation bubbles as a reliable source has led to its implementation to different fields, namely, heat transfer, surface cleaning and fouling, water treatment, food industry, chemical reactions, energy harvesting. A considerable amount of energy in the mentioned industries is required for thermal applications. Cavitation could serve for minimizing the energy demand and optimizing the processes. Thus, the energy efficiency of the systems could be significantly enhanced. This review article focuses on the direct and indirect thermal applications of hydrodynamic and acoustic cavitation. Relevant studies with emerging applications are discussed, while developments in cavitation, which have given rise to thermal applications during the last decade, are also included in this review.} - \field{issn}{1359-4311} - \field{journaltitle}{Applied Thermal Engineering} - \field{month}{5} - \field{note}{84 citations (Semantic Scholar/DOI) [2025-04-13]} - \field{shorttitle}{Direct and indirect thermal applications of hydrodynamic and acoustic cavitation} - \field{title}{Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: {A} review} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{171} - \field{year}{2020} - \field{urldateera}{ce} - \field{pages}{115065} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.applthermaleng.2020.115065 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X - \endverb - \keyw{Acoustic cavitation,Food industry,Heat transfer enhancement,Hydrodynamic cavitation,Water treatment} - \endentry \entry{shinEffectMolybdenumMicrostructure2003}{article}{}{} \name{author}{5}{}{% {{hash=11c1c63fde4778e27fd93d2389dd1d9f}{% @@ -931,8 +1098,8 @@ \strng{authornamehash}{35defe2b8f7d338cdec33698baeff00a} \strng{authorfullhash}{178cbc46d086767ebf3c6301cad009cf} \strng{authorfullhashraw}{178cbc46d086767ebf3c6301cad009cf} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} + \field{sortinit}{S} + \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{The Stellite 6 hardfacing alloys with different Mo contents have been deposited on AISI 1045-carbon steel using a Plasma Transferred Arc (PTA) welding machine. The effect of Mo on the microstructures and wear resistance properties of the Stellite 6 hardfacing alloys were investigated using optical microscopy, scanning electron microscopy, electron probe microanalysis and X-ray diffraction. With an increase in Mo contents, the M23C6 and M6C type carbides were formed instead of Cr-rich M7C3 and M23C6 type carbides observed in the interdenritic region of the Mo-free Stellite 6 hardfacing alloy. The size of Cr-rich carbides in interdendritic region decreased, but that of M6C type carbide increased as well as the refinement of Co-rich dendrites. The volume fraction of Cr-rich carbides slightly increased, but that of M6C type carbide abruptly increased. This microstructural change was responsible for the improvement of the mechanical properties such as hardness and wear resistance of the Mo-modified Stellite 6 hardfacing alloy.} @@ -960,279 +1127,6 @@ \endverb \keyw{Co-base Stellite alloys,Microstructure and wear resistance,Molybdenum,PTA} \endentry - \entry{ahmedSlidingWearBlended2021a}{article}{}{} - \name{author}{3}{}{% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=75bf7913ab7463c6e3734bec975046fc}{% - family={Villiers\bibnamedelima Lovelock}, - familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, - given={H.\bibnamedelimi L.}, - giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, - prefix={de}, - prefixi={d\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{fullhash}{652318761812c14e2605b641664892df} - \strng{fullhashraw}{652318761812c14e2605b641664892df} - \strng{bibnamehash}{652318761812c14e2605b641664892df} - \strng{authorbibnamehash}{652318761812c14e2605b641664892df} - \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{authorfullhash}{652318761812c14e2605b641664892df} - \strng{authorfullhashraw}{652318761812c14e2605b641664892df} - \field{extraname}{3} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{This investigation reports on the tribomechanical evaluations of a Co-based alloy obtained by the hot isostatic pressing (HIPing) of a blend of two standard gas atomized cobalt alloy powders. A HIPed blend of Stellite 6 and Stellite 20 was used to investigate the effect of varying the C, Cr, and W content simultaneously on the structure-property relationships. Microstructural evaluations involved scanning electron microscopy and x-ray diffraction. Experimental evaluations were conducted using hardness, impact, tensile, abrasive wear and sliding wear tests to develop an understanding of the mechanical and tribological performance of the alloys. Results are discussed in terms of the failure modes for the mechanical tests, and wear mechanisms for the tribological tests. This study indicates that powder blends can be used to design for a desired combination of mechanical strength and wear properties in these HIPed alloys. Specific relationships were observed between the alloy composition and carbide content, hardness, impact energy and wear resistance. There was a linear relationship between the weighted W- and C-content and the carbide fraction. The abrasive wear performance also showed a linear relationship with the weighted alloy composition. The pin-on-disc and ball-on-flat experiments revealed a more complex relationship between the alloy composition and the wear rate.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{2} - \field{note}{18 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{title}{Sliding wear of blended cobalt based alloys} - \field{urlday}{13} - \field{urlmonth}{7} - \field{urlyear}{2024} - \field{volume}{466-467} - \field{year}{2021} - \field{urldateera}{ce} - \field{pages}{203533} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.wear.2020.203533 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 - \endverb - \keyw{Blending,HIPing,Hardness,Powder metallurgy,Sliding wear,Stellite alloy} - \endentry - \entry{crookCobaltbaseAlloysResist1994}{article}{}{} - \name{author}{1}{}{% - {{hash=16985215fbfc4124567154cd4ca61487}{% - family={Crook}, - familyi={C\bibinitperiod}, - given={P}, - giveni={P\bibinitperiod}}}% - } - \strng{namehash}{16985215fbfc4124567154cd4ca61487} - \strng{fullhash}{16985215fbfc4124567154cd4ca61487} - \strng{fullhashraw}{16985215fbfc4124567154cd4ca61487} - \strng{bibnamehash}{16985215fbfc4124567154cd4ca61487} - \strng{authorbibnamehash}{16985215fbfc4124567154cd4ca61487} - \strng{authornamehash}{16985215fbfc4124567154cd4ca61487} - \strng{authorfullhash}{16985215fbfc4124567154cd4ca61487} - \strng{authorfullhashraw}{16985215fbfc4124567154cd4ca61487} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{issn}{0882-7958} - \field{journaltitle}{Cobalt-base alloys resist wear, corrosion, and heat} - \field{note}{Place: Materials Park, OH Publisher: ASM International} - \field{number}{4} - \field{title}{Cobalt-base alloys resist wear, corrosion, and heat} - \field{volume}{145} - \field{year}{1994} - \field{pages}{27\bibrangedash 30} - \range{pages}{4} - \endentry - \entry{huangMicrostructureEvolutionMartensite2023}{article}{}{} - \name{author}{6}{}{% - {{hash=55328195d8b2c0f90f11e12f5ddb7d65}{% - family={Huang}, - familyi={H\bibinitperiod}, - given={Zonglian}, - giveni={Z\bibinitperiod}}}% - {{hash=2938deb5048323c6e1bfdd80975d5b28}{% - family={Wang}, - familyi={W\bibinitperiod}, - given={Bo}, - giveni={B\bibinitperiod}}}% - {{hash=0138deaf332692ced30d823b9cebc488}{% - family={Liu}, - familyi={L\bibinitperiod}, - given={Fei}, - giveni={F\bibinitperiod}}}% - {{hash=92c4cc87ddf9f0a5abb5ff8d5b8878d4}{% - family={Song}, - familyi={S\bibinitperiod}, - given={Min}, - giveni={M\bibinitperiod}}}% - {{hash=971be18e8809118d44c885580820c916}{% - family={Ni}, - familyi={N\bibinitperiod}, - given={Song}, - giveni={S\bibinitperiod}}}% - {{hash=eb96d2754cddae273dd482f087734e31}{% - family={Liu}, - familyi={L\bibinitperiod}, - given={Shaojun}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{61779e4ce456f415f5dc118db21bed83} - \strng{fullhash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{fullhashraw}{8ca9ebea09cf1f645c339306001d45ac} - \strng{bibnamehash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{authorbibnamehash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{authornamehash}{61779e4ce456f415f5dc118db21bed83} - \strng{authorfullhash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{authorfullhashraw}{8ca9ebea09cf1f645c339306001d45ac} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{The influence of laser energy density and heat treatment on the microstructure and properties of Co-Cr-Mo-W alloys fabricated by selective laser melting (SLM) are investigated symmetrically. When the laser power, the scanning speed, and the scanning space are set as 160 W, 400 mm/s, and 0.07 mm, respectively, the SLM-ed Co-Cr-Mo-W alloys display high strength and good ductility simultaneously. The precipitates ranging from nano- to macro- scale are finely distributed in SLM-ed CoCr alloys grains and/or along the grain boundaries in the heat treated alloys. Co-Cr-Mo-W alloys with an excellent combination of strength and ductility can be achieved by tailoring the microstructure and morphology of SLM-ed alloys during the heat treatment. The tensile strength, yield strength, and elongation are 1221.38 ± 10 MPa, 778.81 ± 12 MPa, and 17.2 ± 0.67\%, respectively.} - \field{issn}{0263-4368} - \field{journaltitle}{International Journal of Refractory Metals and Hard Materials} - \field{month}{6} - \field{title}{Microstructure evolution, martensite transformation and mechanical properties of heat treated {Co}-{Cr}-{Mo}-{W} alloys by selective laser melting} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{113} - \field{year}{2023} - \field{urldateera}{ce} - \field{pages}{106170} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.ijrmhm.2023.106170 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 - \endverb - \keyw{Co–Cr–Mo-W alloys,Heat treatment,Martensite phase transformation,Mechanical properties,Selective laser melting} - \endentry - \entry{tawancyFccHcpTransformation1986}{article}{}{} - \name{author}{3}{}{% - {{hash=f3547527506994c69c774b2c0d77ac73}{% - family={Tawancy}, - familyi={T\bibinitperiod}, - given={H.\bibnamedelimi M.}, - giveni={H\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=f7d566a34064f3d0ccab33dde7a34069}{% - family={Ishwar}, - familyi={I\bibinitperiod}, - given={V.\bibnamedelimi R.}, - giveni={V\bibinitperiod\bibinitdelim R\bibinitperiod}}}% - {{hash=6f964da88776c95344b60d3d9b6241fa}{% - family={Lewis}, - familyi={L\bibinitperiod}, - given={B.\bibnamedelimi E.}, - giveni={B\bibinitperiod\bibinitdelim E\bibinitperiod}}}% - } - \list{language}{1}{% - {en}% - } - \strng{namehash}{4de94c11cde2eac1de960723e9eac321} - \strng{fullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{fullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{bibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{authorbibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{authornamehash}{4de94c11cde2eac1de960723e9eac321} - \strng{authorfullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{authorfullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{issn}{1573-4811} - \field{journaltitle}{Journal of Materials Science Letters} - \field{month}{3} - \field{note}{33 citations (Semantic Scholar/DOI) [2025-04-13]} - \field{number}{3} - \field{title}{On the fcc → hcp transformation in a cobalt-base superalloy ({Haynes} alloy {No}. 25)} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{5} - \field{year}{1986} - \field{urldateera}{ce} - \field{pages}{337\bibrangedash 341} - \range{pages}{5} - \verb{doi} - \verb 10.1007/BF01748098 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1007/BF01748098 - \endverb - \verb{url} - \verb https://doi.org/10.1007/BF01748098 - \endverb - \keyw{Haynes Alloy,Polymer,Polymers} - \endentry - \entry{yuComparisonTriboMechanicalProperties2007}{article}{}{} - \name{author}{3}{}{% - {{hash=f46cff6a47143fdbd36ae8842919e073}{% - family={Yu}, - familyi={Y\bibinitperiod}, - given={H.}, - giveni={H\bibinitperiod}}}% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=39fbce992265c4dd42ff7cb6ab804ded}{% - family={Villiers\bibnamedelima Lovelock}, - familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, - given={H.}, - giveni={H\bibinitperiod}, - prefix={de}, - prefixi={d\bibinitperiod}}}% - } - \strng{namehash}{56581c67a86bce08f334a1ace4c9fccb} - \strng{fullhash}{8e67a0a25c7114030e7e739ed034990b} - \strng{fullhashraw}{8e67a0a25c7114030e7e739ed034990b} - \strng{bibnamehash}{8e67a0a25c7114030e7e739ed034990b} - \strng{authorbibnamehash}{8e67a0a25c7114030e7e739ed034990b} - \strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb} - \strng{authorfullhash}{8e67a0a25c7114030e7e739ed034990b} - \strng{authorfullhashraw}{8e67a0a25c7114030e7e739ed034990b} - \field{extraname}{1} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt \% composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.} - \field{issn}{0742-4787} - \field{journaltitle}{Journal of Tribology} - \field{month}{1} - \field{note}{37 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{3} - \field{title}{A {Comparison} of the {Tribo}-{Mechanical} {Properties} of a {Wear} {Resistant} {Cobalt}-{Based} {Alloy} {Produced} by {Different} {Manufacturing} {Processes}} - \field{urlday}{17} - \field{urlmonth}{11} - \field{urlyear}{2024} - \field{volume}{129} - \field{year}{2007} - \field{urldateera}{ce} - \field{pages}{586\bibrangedash 594} - \range{pages}{9} - \verb{doi} - \verb 10.1115/1.2736450 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1115/1.2736450 - \endverb - \verb{url} - \verb https://doi.org/10.1115/1.2736450 - \endverb - \endentry \entry{stoicaInfluenceHeattreatmentSliding2005}{article}{}{} \name{author}{3}{}{% {{hash=9ee308ed1264406c99dc3dc19fc74bbc}{% @@ -1254,16 +1148,16 @@ \list{language}{1}{% {English}% } - \strng{namehash}{1dad3e925506f0bfcbc611fb083a4a04} + \strng{namehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} \strng{fullhash}{09c4b7a69ffaf05661ccd1c9f30d41c3} \strng{fullhashraw}{09c4b7a69ffaf05661ccd1c9f30d41c3} \strng{bibnamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} \strng{authorbibnamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{authornamehash}{1dad3e925506f0bfcbc611fb083a4a04} + \strng{authornamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} \strng{authorfullhash}{09c4b7a69ffaf05661ccd1c9f30d41c3} \strng{authorfullhashraw}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} + \field{sortinit}{S} + \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{Functionally graded WC-NiCrBSi coatings were thermally sprayed using a High Velocity Oxy-Fuel (JP5000) system and heat-treated at 1200 °C in argon environment. The relative performance of the as-sprayed and heat-treated coatings was investigated in sliding wear under different tribological conditions of contact stress, and test couple configuration, using a high frequency reciprocating ball on plate rig. Test results are discussed with the help of microstructural evaluations and mechanical properties measurements. Results indicate that by heat-treating the coatings at a temperature of 1200 °C, it is possible to achieve higher wear resistance, both in terms of coating wear, as well as the total wear of the test couples. This was attributed to the improvements in the coating microstructure during the heat-treatment, which resulted in an improvement in coating's mechanical properties through the formation of hard phases, elimination of brittle W2C and W, and the establishment of metallurgical bonding within the coating microstructure. © 2005 Elsevier B.V. All rights reserved.} @@ -1287,128 +1181,6 @@ \endverb \keyw{Bonding,Brittleness,Cermets,Coating microstructure,Frequencies,Functionally graded materials,Heat treatment,Heat-treated coatings,Heat-treatment,High Velocity Oxy-Fuel,Mechanical properties,Microstructure,Nickel compounds,Phase composition,Sliding wear,Sprayed coatings,Thermal spray coatings,Tribology,Tungsten compounds,Wear of materials,heat treatment,sliding wear} \endentry - \entry{ahmedInfluenceReHIPingStructure2013}{article}{}{} - \name{author}{4}{}{% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=75bf7913ab7463c6e3734bec975046fc}{% - family={Villiers\bibnamedelima Lovelock}, - familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, - given={H.\bibnamedelimi L.}, - giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, - prefix={de}, - prefixi={d\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - {{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{% - family={Faisal}, - familyi={F\bibinitperiod}, - given={N.\bibnamedelimi H.}, - giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}% - } - \strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{fullhash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{fullhashraw}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{bibnamehash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{authorbibnamehash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{authorfullhash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{authorfullhashraw}{e70fdd408b4a5e9730bd0722565b8e34} - \field{extraname}{4} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{HIP-consolidation (Hot Isostatic Pressing or HIPing) of cobalt-based Stellite alloys offers significant technological advantages for components operating in aggressive wear environments. The aim of this investigation was to ascertain the effect of re-HIPing on the HIPed alloy properties for Stellite 4, 6 and 20 alloys. Structure–property relationships are discussed on the basis of microstructural and tribo-mechanical evaluations. Re-HIPing results in coarsening of carbides and solid solution strengthening of the matrix. The average indentation modulus improved, as did the average hardness at micro- and nano-scales. Re-HIPing showed improvement in wear properties the extent of which was dependent on alloy composition.} - \field{issn}{0301-679X} - \field{journaltitle}{Tribology International} - \field{month}{1} - \field{note}{38 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{title}{Influence of {Re}-{HIPing} on the structure–property relationships of cobalt-based alloys} - \field{urlday}{30} - \field{urlmonth}{6} - \field{urlyear}{2024} - \field{volume}{57} - \field{year}{2013} - \field{urldateera}{ce} - \field{pages}{8\bibrangedash 21} - \range{pages}{14} - \verb{doi} - \verb 10.1016/j.triboint.2012.06.025 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 - \endverb - \keyw{Abrasive wear,Cobalt based alloys,HIPing and Re-HIPing,Stellite 4,6,20,alloys} - \endentry - \entry{yuInfluenceManufacturingProcess2008}{article}{}{} - \name{author}{4}{}{% - {{hash=f46cff6a47143fdbd36ae8842919e073}{% - family={Yu}, - familyi={Y\bibinitperiod}, - given={H.}, - giveni={H\bibinitperiod}}}% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=720a4573d41f2302c51d8dfc20eb7025}{% - family={Lovelock}, - familyi={L\bibinitperiod}, - given={H.\bibnamedelimi de\bibnamedelima Villiers}, - giveni={H\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim V\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{56581c67a86bce08f334a1ace4c9fccb} - \strng{fullhash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{fullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{bibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{authorbibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb} - \strng{authorfullhash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{authorfullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4} - \field{extraname}{2} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{Manufacturing process routes of materials can be adapted to manipulate their microstructure and hence their tribological performance. As industrial demands push the applications of tribological materials to harsher environments of higher stress, starved lubrication, and improved life performance, manufacturing processes can be tailored to optimize their use in particular engineering applications. The aim of this paper was therefore to comprehend the structure-property relationships of a wear resistant cobalt-based alloy (Stellite 6) produced from two different processing routes of powder consolidated hot isostatic pressing (HIPing) and casting. This alloy had a nominal wt \% composition of Co–28Cr–4.5W–1C, which is commonly used in wear related applications in harsh tribological environments. However, the coarse carbide structure of the cast alloy results in higher brittleness and lower toughness. Hence this research was conducted to comprehend if carbide refinement, caused by changing the processing route to HIPing, could improve the tribomechanical performance of this alloy. Microstructural and tribomechanical evaluations, which involved hardness, impact toughness, abrasive wear, sliding wear, and contact fatigue performance tests, indicated that despite the similar abrasive and sliding wear resistance of both alloys, the HIPed alloy exhibited an improved contact fatigue and impact toughness performance in comparison to the cast counterpart. This difference in behavior is discussed in terms of the structure-property relationships. Results of this research indicated that the HIPing process could provide additional impact and fatigue resistance to this alloy without compromising the hardness and the abrasive/sliding wear resistance, which makes the HIPed alloy suitable for relatively higher stress applications. Results are also compared with a previously reported investigation of the Stellite 20 alloy, which had a much higher carbide content in comparison to the Stellite 6 alloy, caused by the variation in the content of alloying elements. These results indicated that the fatigue resistance did not follow the expected trend of the improvement in impact toughness. In terms of the design process, the combination of hardness, toughness, and carbide content show a complex interdependency, where a 40\% reduction in the average hardness and 60\% reduction in carbide content had a more dominating effect on the contact fatigue resistance when compared with an order of magnitude improvement in the impact toughness of the HIPed Stellite 6 alloy.} - \field{issn}{0742-4787} - \field{journaltitle}{Journal of Tribology} - \field{month}{12} - \field{note}{46 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{011601} - \field{title}{Influence of {Manufacturing} {Process} and {Alloying} {Element} {Content} on the {Tribomechanical} {Properties} of {Cobalt}-{Based} {Alloys}} - \field{urlday}{13} - \field{urlmonth}{7} - \field{urlyear}{2024} - \field{volume}{131} - \field{year}{2008} - \field{urldateera}{ce} - \verb{doi} - \verb 10.1115/1.2991122 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1115/1.2991122 - \endverb - \verb{url} - \verb https://doi.org/10.1115/1.2991122 - \endverb - \endentry \entry{szalaEffectNitrogenIon2021}{article}{}{} \name{author}{6}{}{% {{hash=26ecda2187f0e2b702a2497a5dc3f27d}{% @@ -1453,8 +1225,8 @@ \strng{authornamehash}{0c580510ffd19c48fb276fd9bcbd3cc8} \strng{authorfullhash}{ed8bfd0d39c94dcd76e642641bd4b638} \strng{authorfullhashraw}{ed8bfd0d39c94dcd76e642641bd4b638} - \field{sortinit}{5} - \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} + \field{sortinit}{S} + \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5*1016 cm-2 and 1*1017 cm-2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the "(hcp) to (fcc) structure. Unimplanted stellite "-rich matrix is less prone to plastic deformation than and consequently, increase of phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable structure formed by ion implantation consumes the cavitation load for work-hardening and ! " martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials. © 2021 by the authors.} @@ -1476,6 +1248,64 @@ \endverb \keyw{AISI-304 stainless steel,Atomic force microscopy,Carbides,Cavitation,Cavitation erosion,Cavitation erosion resistance,Chromium compounds,Cobalt alloy,Cobalt alloys,Cracks propagation,Damage mechanism,Engineering materials,Erosion,Failure analysis,Ion implantation,Ions,Linear transformations,Martensitic transformations,Mean depth of erosions,Metastable structures,Nitrogen,Nitrogen ion implantations,Phase transformation,Plastic deformation,Stellite,Stellite 6,Strain hardening,Surface profilometers,Wear,X ray diffraction} \endentry + \entry{tawancyFccHcpTransformation1986}{article}{}{} + \name{author}{3}{}{% + {{hash=f3547527506994c69c774b2c0d77ac73}{% + family={Tawancy}, + familyi={T\bibinitperiod}, + given={H.\bibnamedelimi M.}, + giveni={H\bibinitperiod\bibinitdelim M\bibinitperiod}}}% + {{hash=f7d566a34064f3d0ccab33dde7a34069}{% + family={Ishwar}, + familyi={I\bibinitperiod}, + given={V.\bibnamedelimi R.}, + giveni={V\bibinitperiod\bibinitdelim R\bibinitperiod}}}% + {{hash=6f964da88776c95344b60d3d9b6241fa}{% + family={Lewis}, + familyi={L\bibinitperiod}, + given={B.\bibnamedelimi E.}, + giveni={B\bibinitperiod\bibinitdelim E\bibinitperiod}}}% + } + \list{language}{1}{% + {en}% + } + \strng{namehash}{b41586e8f4d7f9d36d48a78941a8c3b5} + \strng{fullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} + \strng{fullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} + \strng{bibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} + \strng{authorbibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} + \strng{authornamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} + \strng{authorfullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} + \strng{authorfullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} + \field{sortinit}{T} + \field{sortinithash}{9af77f0292593c26bde9a56e688eaee9} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{issn}{1573-4811} + \field{journaltitle}{Journal of Materials Science Letters} + \field{month}{3} + \field{note}{33 citations (Semantic Scholar/DOI) [2025-04-13]} + \field{number}{3} + \field{title}{On the fcc → hcp transformation in a cobalt-base superalloy ({Haynes} alloy {No}. 25)} + \field{urlday}{13} + \field{urlmonth}{4} + \field{urlyear}{2025} + \field{volume}{5} + \field{year}{1986} + \field{urldateera}{ce} + \field{pages}{337\bibrangedash 341} + \range{pages}{5} + \verb{doi} + \verb 10.1007/BF01748098 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1007/BF01748098 + \endverb + \verb{url} + \verb https://doi.org/10.1007/BF01748098 + \endverb + \keyw{Haynes Alloy,Polymer,Polymers} + \endentry \entry{thiruvengadamTheoryErosion1967}{article}{}{} \name{author}{1}{}{% {{hash=d3cae98a50611da092efbc498a5a497c}{% @@ -1492,8 +1322,8 @@ \strng{authornamehash}{d3cae98a50611da092efbc498a5a497c} \strng{authorfullhash}{d3cae98a50611da092efbc498a5a497c} \strng{authorfullhashraw}{d3cae98a50611da092efbc498a5a497c} - \field{sortinit}{6} - \field{sortinithash}{b33bc299efb3c36abec520a4c896a66d} + \field{sortinit}{T} + \field{sortinithash}{9af77f0292593c26bde9a56e688eaee9} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{An elementary theory of erosion is derived based on the assumptions of 'accumulation' and 'attenuation' of the energies of impact causing erosion. This theory quantitatively predicts the relative intensity of erosion as a function of relative time and this prediction is in fair agreement with experimental observations. Since the intensity of collision, the distance of shock transmission and the material failure are all statistical events, a generalization of the elementary theory is suggested. Some of the practical results of this theory are the predictions of the cumulative depth of erosion, the determination of erosion strength and the method of correlation with other parameters such as liquid properties and hydrodynamic factors. Modifications of this theory for brittle and viscoelastic materials are also suggested. (Author)} @@ -1505,62 +1335,171 @@ \field{pages}{53} \range{pages}{1} \endentry - \enddatalist -\endrefsection - -\refsection{1} - \datalist[entry]{none/global//global/global/global} - \entry{C05}{misc}{}{} - \name{author}{1}{}{% - {{hash=fc13b91fcf8c46eeb4e62740272a1ba9}{% - family={Awesome}, + \entry{yuInfluenceManufacturingProcess2008}{article}{}{} + \name{author}{4}{}{% + {{hash=f46cff6a47143fdbd36ae8842919e073}{% + family={Yu}, + familyi={Y\bibinitperiod}, + given={H.}, + giveni={H\bibinitperiod}}}% + {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% + family={Ahmed}, familyi={A\bibinitperiod}, - given={F.}, - giveni={F\bibinitperiod}}}% + given={R.}, + giveni={R\bibinitperiod}}}% + {{hash=720a4573d41f2302c51d8dfc20eb7025}{% + family={Lovelock}, + familyi={L\bibinitperiod}, + given={H.\bibnamedelimi de\bibnamedelima Villiers}, + giveni={H\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim V\bibinitperiod}}}% + {{hash=0e68382b25995f7a55c9b600def7c365}{% + family={Davies}, + familyi={D\bibinitperiod}, + given={S.}, + giveni={S\bibinitperiod}}}% } - \strng{namehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{fullhash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{fullhashraw}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{bibnamehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authorbibnamehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authornamehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authorfullhash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authorfullhashraw}{fc13b91fcf8c46eeb4e62740272a1ba9} - \field{extraname}{1} - \field{sortinit}{2} - \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} + \strng{namehash}{56581c67a86bce08f334a1ace4c9fccb} + \strng{fullhash}{57ca415fdcbe0d531a76658a78b7a3d4} + \strng{fullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4} + \strng{bibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4} + \strng{authorbibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4} + \strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb} + \strng{authorfullhash}{57ca415fdcbe0d531a76658a78b7a3d4} + \strng{authorfullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4} + \field{sortinit}{Y} + \field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{title}{Frank} - \field{year}{2005} - \true{nocite} - \keyw{mine} + \field{abstract}{Manufacturing process routes of materials can be adapted to manipulate their microstructure and hence their tribological performance. As industrial demands push the applications of tribological materials to harsher environments of higher stress, starved lubrication, and improved life performance, manufacturing processes can be tailored to optimize their use in particular engineering applications. The aim of this paper was therefore to comprehend the structure-property relationships of a wear resistant cobalt-based alloy (Stellite 6) produced from two different processing routes of powder consolidated hot isostatic pressing (HIPing) and casting. This alloy had a nominal wt \% composition of Co–28Cr–4.5W–1C, which is commonly used in wear related applications in harsh tribological environments. However, the coarse carbide structure of the cast alloy results in higher brittleness and lower toughness. Hence this research was conducted to comprehend if carbide refinement, caused by changing the processing route to HIPing, could improve the tribomechanical performance of this alloy. Microstructural and tribomechanical evaluations, which involved hardness, impact toughness, abrasive wear, sliding wear, and contact fatigue performance tests, indicated that despite the similar abrasive and sliding wear resistance of both alloys, the HIPed alloy exhibited an improved contact fatigue and impact toughness performance in comparison to the cast counterpart. This difference in behavior is discussed in terms of the structure-property relationships. Results of this research indicated that the HIPing process could provide additional impact and fatigue resistance to this alloy without compromising the hardness and the abrasive/sliding wear resistance, which makes the HIPed alloy suitable for relatively higher stress applications. Results are also compared with a previously reported investigation of the Stellite 20 alloy, which had a much higher carbide content in comparison to the Stellite 6 alloy, caused by the variation in the content of alloying elements. These results indicated that the fatigue resistance did not follow the expected trend of the improvement in impact toughness. In terms of the design process, the combination of hardness, toughness, and carbide content show a complex interdependency, where a 40\% reduction in the average hardness and 60\% reduction in carbide content had a more dominating effect on the contact fatigue resistance when compared with an order of magnitude improvement in the impact toughness of the HIPed Stellite 6 alloy.} + \field{issn}{0742-4787} + \field{journaltitle}{Journal of Tribology} + \field{month}{12} + \field{note}{46 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{number}{011601} + \field{title}{Influence of {Manufacturing} {Process} and {Alloying} {Element} {Content} on the {Tribomechanical} {Properties} of {Cobalt}-{Based} {Alloys}} + \field{urlday}{13} + \field{urlmonth}{7} + \field{urlyear}{2024} + \field{volume}{131} + \field{year}{2008} + \field{urldateera}{ce} + \verb{doi} + \verb 10.1115/1.2991122 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1115/1.2991122 + \endverb + \verb{url} + \verb https://doi.org/10.1115/1.2991122 + \endverb \endentry - \entry{C06}{misc}{}{} - \name{author}{1}{}{% - {{hash=fc13b91fcf8c46eeb4e62740272a1ba9}{% - family={Awesome}, + \entry{yuComparisonTriboMechanicalProperties2007}{article}{}{} + \name{author}{3}{}{% + {{hash=f46cff6a47143fdbd36ae8842919e073}{% + family={Yu}, + familyi={Y\bibinitperiod}, + given={H.}, + giveni={H\bibinitperiod}}}% + {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% + family={Ahmed}, familyi={A\bibinitperiod}, - given={F.}, - giveni={F\bibinitperiod}}}% + given={R.}, + giveni={R\bibinitperiod}}}% + {{hash=39fbce992265c4dd42ff7cb6ab804ded}{% + family={Villiers\bibnamedelima Lovelock}, + familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, + given={H.}, + giveni={H\bibinitperiod}, + prefix={de}, + prefixi={d\bibinitperiod}}}% } - \strng{namehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{fullhash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{fullhashraw}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{bibnamehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authorbibnamehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authornamehash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authorfullhash}{fc13b91fcf8c46eeb4e62740272a1ba9} - \strng{authorfullhashraw}{fc13b91fcf8c46eeb4e62740272a1ba9} - \field{extraname}{2} - \field{sortinit}{3} - \field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7} + \strng{namehash}{8e67a0a25c7114030e7e739ed034990b} + \strng{fullhash}{8e67a0a25c7114030e7e739ed034990b} + \strng{fullhashraw}{8e67a0a25c7114030e7e739ed034990b} + \strng{bibnamehash}{8e67a0a25c7114030e7e739ed034990b} + \strng{authorbibnamehash}{8e67a0a25c7114030e7e739ed034990b} + \strng{authornamehash}{8e67a0a25c7114030e7e739ed034990b} + \strng{authorfullhash}{8e67a0a25c7114030e7e739ed034990b} + \strng{authorfullhashraw}{8e67a0a25c7114030e7e739ed034990b} + \field{sortinit}{Y} + \field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495} \field{labelnamesource}{author} \field{labeltitlesource}{title} - \field{title}{frank, but lowercase} - \field{year}{2006} - \true{nocite} - \keyw{mine} + \field{abstract}{This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt \% composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.} + \field{issn}{0742-4787} + \field{journaltitle}{Journal of Tribology} + \field{month}{1} + \field{note}{37 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{number}{3} + \field{title}{A {Comparison} of the {Tribo}-{Mechanical} {Properties} of a {Wear} {Resistant} {Cobalt}-{Based} {Alloy} {Produced} by {Different} {Manufacturing} {Processes}} + \field{urlday}{17} + \field{urlmonth}{11} + \field{urlyear}{2024} + \field{volume}{129} + \field{year}{2007} + \field{urldateera}{ce} + \field{pages}{586\bibrangedash 594} + \range{pages}{9} + \verb{doi} + \verb 10.1115/1.2736450 + \endverb + \verb{urlraw} + \verb https://doi.org/10.1115/1.2736450 + \endverb + \verb{url} + \verb https://doi.org/10.1115/1.2736450 + \endverb + \endentry + \entry{zhangFrictionWearCharacterization2002}{article}{}{} + \name{author}{2}{}{% + {{hash=9ac5c6e1891a9d327b6cf9dce9924eaa}{% + family={Zhang}, + familyi={Z\bibinitperiod}, + given={K}, + giveni={K\bibinitperiod}}}% + {{hash=cb8741204d7e12b6db11ee35f025c97c}{% + family={Battiston}, + familyi={B\bibinitperiod}, + given={L}, + giveni={L\bibinitperiod}}}% + } + \strng{namehash}{bf171f4e97c3179e4c0d9908cf319a1f} + \strng{fullhash}{bf171f4e97c3179e4c0d9908cf319a1f} + \strng{fullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} + \strng{bibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} + \strng{authorbibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} + \strng{authornamehash}{bf171f4e97c3179e4c0d9908cf319a1f} + \strng{authorfullhash}{bf171f4e97c3179e4c0d9908cf319a1f} + \strng{authorfullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} + \field{sortinit}{Z} + \field{sortinithash}{96892c0b0a36bb8557c40c49813d48b3} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{abstract}{A full-journal submerged bearing test rig was built to evaluate the friction and wear behavior of materials in zinc alloy baths. Some cobalt- and iron-based superalloys were tested using this rig at conditions similar to those of a continuous galvanizing operation (load and bath chemistry). Metallographic and chemical analyses were conducted on tested samples to characterize the wear. It was found that a commonly used cobalt-based material (Stellite \#6) not only suffered considerable wear but also reacted with zinc baths to form intermetallic compounds. Other cobalt- and iron-based superalloys appeared to have negligible reaction with the zinc baths in the short-term tests, but cracks developed in the sub-surface, suggesting that the materials mainly experienced surface fatigue wear. The commonly used cobalt-based superalloy mostly experienced abrasive wear.} + \field{issn}{0043-1648} + \field{journaltitle}{Wear} + \field{month}{2} + \field{note}{33 citations (Semantic Scholar/DOI) [2025-04-12]} + \field{number}{3} + \field{title}{Friction and wear characterization of some cobalt- and iron-based superalloys in zinc alloy baths} + \field{urlday}{1} + \field{urlmonth}{4} + \field{urlyear}{2025} + \field{volume}{252} + \field{year}{2002} + \field{urldateera}{ce} + \field{pages}{332\bibrangedash 344} + \range{pages}{13} + \verb{doi} + \verb 10.1016/S0043-1648(01)00889-4 + \endverb + \verb{urlraw} + \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 + \endverb + \verb{url} + \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 + \endverb + \keyw{Friction and wear,Galvanizing,Submerged hardware,Superalloys} \endentry \enddatalist \endrefsection diff --git a/Thesis.lot b/Thesis.lot index 9ee2365..fee9bf6 100644 --- a/Thesis.lot +++ b/Thesis.lot @@ -2,7 +2,6 @@ \contentsline {xpart}{Chapters}{2}{part.1}% \addvspace {10\p@ } \contentsline {xchapter}{Introduction}{2}{chapter.1}% -\contentsline {table}{\numberline {1.1}{\ignorespaces Stellite Compositions}}{4}{table.caption.7}% \addvspace {10\p@ } \contentsline {xchapter}{Analytical Investigations}{8}{chapter.2}% \addvspace {10\p@ } diff --git a/Thesis.mtc1 b/Thesis.mtc1 index 3f1d6df..d34c05a 100644 --- a/Thesis.mtc1 +++ b/Thesis.mtc1 @@ -1,12 +1,10 @@ -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.1}Table: Show the table of stellite compositions}{\reset@font\mtcSfont 3}{section.1.1}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.2}Table: Show the table of stellite compositions}{\reset@font\mtcSfont 3}{section.1.2}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.3}Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.3}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.4}Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.4}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.5}Paragraph 6: Influence of HIPing\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.5}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.6}General Background}{\reset@font\mtcSfont 5}{section.1.6}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.7}Stellite 1}{\reset@font\mtcSfont 7}{section.1.7}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.8}Stellites}{\reset@font\mtcSfont 7}{section.1.8}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.9}Objectives and Scope of the Research Work}{\reset@font\mtcSfont 7}{section.1.9}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.10}Thesis Outline}{\reset@font\mtcSfont 7}{section.1.10}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.11}Literature Survey}{\reset@font\mtcSfont 7}{section.1.11}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.12}Cavitation Tests}{\reset@font\mtcSfont 7}{section.1.12}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.1}Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.1}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.2}Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.2}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.3}Paragraph 6: Influence of HIPing\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.3}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.4}General Background}{\reset@font\mtcSfont 5}{section.1.4}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.5}Stellite 1}{\reset@font\mtcSfont 6}{section.1.5}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.6}Stellites}{\reset@font\mtcSfont 7}{section.1.6}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.7}Objectives and Scope of the Research Work}{\reset@font\mtcSfont 7}{section.1.7}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.8}Thesis Outline}{\reset@font\mtcSfont 7}{section.1.8}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.9}Literature Survey}{\reset@font\mtcSfont 7}{section.1.9}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.10}Cavitation Tests}{\reset@font\mtcSfont 7}{section.1.10}} diff --git a/Thesis.org b/Thesis.org index d4458fc..c8e6662 100644 --- a/Thesis.org +++ b/Thesis.org @@ -1,40 +1,312 @@ - - - - #+LaTeX_CLASS: report #+OPTIONS: author:nil date:nil title:nil toc:nil -#+LaTeX_HEADER: \usepackage{booktabs} -#+LaTeX_HEADER: \graphicspath{{expt/}} -#+LaTeX_HEADER: \input{I-packages} -#+LaTeX_HEADER: \input{I-config} -#+LaTeX_HEADER: \input{I-info} -#+LaTeX_HEADER: \input{I-glossary} -#+LaTeX_HEADER: \input{I-packages-2} -#+LaTeX_HEADER: % some package need to be loaded last in preamble +* Preamble :ignore_heading: +#+LaTeX: \dominitoc + +** Packages :ignore_heading: #+LaTeX_HEADER: \usepackage{multirow} #+LaTeX_HEADER: \usepackage[flushleft]{threeparttable} % http://ctan.org/pkg/threeparttable #+LaTeX_HEADER: \usepackage{booktabs,caption} +#+LaTeX_HEADER: \graphicspath{{expt/}} -* Preamble :ignore_heading: +#+LaTeX_HEADER: \usepackage{pdflscape} +#+LaTeX_HEADER: \usepackage{longtable} +#+LaTeX_HEADER: \usepackage{threeparttablex} +#+LaTeX_HEADER: \usepackage{multirow} +#+LaTeX_HEADER: \usepackage{caption} +#+LaTeX_HEADER: \usepackage{booktabs} % Added for nicer rules -#+LaTeX: \dominitoc +#+LaTeX_HEADER: \usepackage{graphicx} % include graphics +#+LaTeX_HEADER: \usepackage{fancyhdr} % layout +#+LaTeX_HEADER: \usepackage[english]{babel} +#+LaTeX_HEADER: %\usepackage[utf8]{inputenc} +#+LaTeX_HEADER: \usepackage[T1]{fontenc} % font +#+LaTeX_HEADER: \usepackage{csquotes} +#+LaTeX_HEADER: %\usepackage[defernumbers=true, sorting=none]{biblatex} +#+LaTeX_HEADER: \usepackage[style=ieee, backend=biber, maxbibnames=999]{biblatex} + +#+LaTeX_HEADER: \usepackage{setspace} % spacing +#+LaTeX_HEADER: % \usepackage[left=4cm,right=2cm,top=2cm,bottom=2cm]{geometry} +#+LaTeX_HEADER: \usepackage{mathptmx} % looks like times new roman +#+LaTeX_HEADER: \usepackage{slantsc} +#+LaTeX_HEADER: \usepackage{titlesec} +#+LaTeX_HEADER: \usepackage{mfirstuc} +#+LaTeX_HEADER: \usepackage{calc}% http://ctan.org/pkg/calc +#+LaTeX_HEADER: \usepackage[acronym, nonumberlist]{glossaries} % https://www.overleaf.com/learn/latex/Glossaries + +#+LaTeX_HEADER: \usepackage{hyperref} % https://ctan.org/pkg/hyperref +#+LaTeX_HEADER: \usepackage{pdfpages} +#+LaTeX_HEADER: \usepackage{float} +#+LaTeX_HEADER: \usepackage{minitoc} +#+LaTeX_HEADER: \usepackage{pdflscape} + +** Config :ignore_heading: + + +#+LaTeX_HEADER: %% prefer than direct use in usepackage geometry +#+LaTeX_HEADER: %% A4 layout in point is % 595x842 + +#+LaTeX_HEADER: %% default value +#+LaTeX_HEADER: \setlength{\hoffset}{0pt} +#+LaTeX_HEADER: \setlength{\voffset}{0pt} + +#+LaTeX_HEADER: %% height +#+LaTeX_HEADER: %% 72 - 60 + 20 + 25 = 57 +#+LaTeX_HEADER: \setlength{\topmargin}{-60pt} +#+LaTeX_HEADER: \setlength{\headheight}{20pt} +#+LaTeX_HEADER: \setlength{\headsep}{25pt} + +#+LaTeX_HEADER: \setlength{\footskip}{30pt} + +#+LaTeX_HEADER: %% width +#+LaTeX_HEADER: %% 72 + 32 + 10 = 114pt = 40mm +#+LaTeX_HEADER: \setlength{\oddsidemargin}{32pt} +#+LaTeX_HEADER: \setlength{\evensidemargin}{32pt} +#+LaTeX_HEADER: \setlength{\marginparsep}{10pt} + +#+LaTeX_HEADER: %% size text +#+LaTeX_HEADER: \setlength{\textheight}{728pt} +#+LaTeX_HEADER: \setlength{\textwidth}{425pt} + +#+LaTeX_HEADER: %% style +#+LaTeX_HEADER: %% preliminary, just roman pagination + empty header +#+LaTeX_HEADER: \fancypagestyle{preliminary}{ +#+LaTeX_HEADER: \renewcommand{\headrulewidth}{0pt} +#+LaTeX_HEADER: \fancyhead[RCL]{} +#+LaTeX_HEADER: \pagenumbering{Roman} +#+LaTeX_HEADER: } + +#+LaTeX_HEADER: %% chapter/classic text style +#+LaTeX_HEADER: \fancypagestyle{chapter}{ +#+LaTeX_HEADER: %% title of the chapter, left header, no uppercase, 10 pt, italics, no bold +#+LaTeX_HEADER: \fancyhead[L]{\normalfont\itshape\fontsize{10pt}{12pt}\selectfont\nouppercase{\leftmark}} +#+LaTeX_HEADER: \fancyhead[R]{} +#+LaTeX_HEADER: +#+LaTeX_HEADER: \fancyfoot[C]{\thepage} +#+LaTeX_HEADER: \renewcommand{\headrulewidth}{0.4pt} +#+LaTeX_HEADER: \renewcommand{\footrulewidth}{0pt} +#+LaTeX_HEADER: \pagenumbering{arabic} +#+LaTeX_HEADER: } + +#+LaTeX_HEADER: %% define length and scaling for baseline +#+LaTeX_HEADER: \newcommand{\headingBaseline}{12} +#+LaTeX_HEADER: \newcommand{\headingBaselineDiv}{10} +#+LaTeX_HEADER: \newlength{\chapterFontSize} +#+LaTeX_HEADER: \newlength{\sectionFontSize} +#+LaTeX_HEADER: \newlength{\subsectionFontSize} +#+LaTeX_HEADER: \newlength{\chapterBaseline} +#+LaTeX_HEADER: \newlength{\sectionBaseline} +#+LaTeX_HEADER: \newlength{\subsectionBaseline} + +#+LaTeX_HEADER: %% change those value if you want to change the chapter/section/subsection font size +#+LaTeX_HEADER: \setlength{\chapterFontSize}{14pt} +#+LaTeX_HEADER: \setlength{\sectionFontSize}{12pt} +#+LaTeX_HEADER: \setlength{\subsectionFontSize}{12pt} + +#+LaTeX_HEADER: %% automatic computation for baseline, rule of thumb is 1.2 +#+LaTeX_HEADER: \setlength{\chapterBaseline}{ \chapterFontSize * \headingBaseline / \headingBaselineDiv} +#+LaTeX_HEADER: \setlength{\sectionBaseline}{ \sectionFontSize * \headingBaseline / \headingBaselineDiv} +#+LaTeX_HEADER: \setlength{\subsectionBaseline}{ \subsectionFontSize * \headingBaseline / \headingBaselineDiv} + +#+LaTeX_HEADER: %% headings +#+LaTeX_HEADER: %% Chapter, 14-point, bold +#+LaTeX_HEADER: \titleformat{\chapter}[display] +#+LaTeX_HEADER: {\normalfont\bfseries\fontsize{\chapterFontSize}{\chapterBaseline}\selectfont}{\chaptertitlename\ \thechapter}{14pt}{} +#+LaTeX_HEADER: %% capitalised initial letter, +#+LaTeX_HEADER: % \titleformat{\chapter}[display] +#+LaTeX_HEADER: % {\normalfont\bfseries\fontsize{\chapterFontSize}{\chapterBaseline}\selectfont}{\chaptertitlename\ \thechapter}{14pt}{\capitalisewords} +#+LaTeX_HEADER: %% left|above|below +#+LaTeX_HEADER: \titlespacing{\chapter}{0pt}{10pt}{25pt} + +#+LaTeX_HEADER: %% Section, 12-point +#+LaTeX_HEADER: \titleformat{\section}[hang] +#+LaTeX_HEADER: {\normalfont\bfseries\fontsize{\sectionFontSize}{\sectionBaseline}\selectfont}{\thesection}{5pt}{} +#+LaTeX_HEADER: %% capitalised initial letter +#+LaTeX_HEADER: % \titleformat{\section}[hang] +#+LaTeX_HEADER: % {\normalfont\bfseries\fontsize{\sectionFontSize}{\sectionBaseline}\selectfont}{\thesection}{5pt}{\capitalisewords} +#+LaTeX_HEADER: %% left|above|below +#+LaTeX_HEADER: \titlespacing{\section}{0pt}{25pt}{15pt} + +#+LaTeX_HEADER: %% Subsection, 12-point, italic +#+LaTeX_HEADER: \titleformat{\subsection}[hang] +#+LaTeX_HEADER: {\normalfont\bfseries\itshape\fontsize{\subsectionFontSize}{\subsectionBaseline}\selectfont}{\thesubsection}{5pt}{} +#+LaTeX_HEADER: % \titleformat{\subsection}[hang] +#+LaTeX_HEADER: % {\normalfont\bfseries\itshape\fontsize{\subsectionFontSize}{\subsectionBaseline}\selectfont\MakeLowercase}{\thesubsection}{5pt}{\makefirstuc} +#+LaTeX_HEADER: %% left|above|below +#+LaTeX_HEADER: \titlespacing{\subsection}{0pt}{20pt}{10pt} + +#+LaTeX_HEADER: %% table of content +#+LaTeX_HEADER: \renewcommand{\contentsname}{Table of Contents} +#+LaTeX_HEADER: \setcounter{tocdepth}{2} +#+LaTeX_HEADER: \setcounter{secnumdepth}{2} + +#+LaTeX_HEADER: %% list of figure +#+LaTeX_HEADER: \renewcommand*\listfigurename{Figure table} + +#+LaTeX_HEADER: %% init gloassaries +#+LaTeX_HEADER: %% noidx cause otherwise we have to do a normal glossary, compile, then remove it so it is cached +#+LaTeX_HEADER: %% because we only use acronym +#+LaTeX_HEADER: \makenoidxglossaries + +#+LaTeX_HEADER: %% bibliography config +#+LaTeX_HEADER: %% https://tex.stackexchange.com/a/6977 +#+LaTeX_HEADER: \DeclareBibliographyCategory{cited} +#+LaTeX_HEADER: \AtEveryCitekey{\addtocategory{cited}{\thefield{entrykey}}} +#+LaTeX_HEADER: \addbibresource{Bibliography.bib} +#+LaTeX_HEADER: \addbibresource{BibMine.bib} +#+LaTeX_HEADER: \addbibresource{references.bib} + +#+LaTeX_HEADER: %% hyperref setup +#+LaTeX_HEADER: \hypersetup{ +#+LaTeX_HEADER: colorlinks = true, +#+LaTeX_HEADER: linkcolor = blue, % normal internal links, like ref, can be black tbh +#+LaTeX_HEADER: citecolor = blue, % bibliographical links +#+LaTeX_HEADER: urlcolor = blue, % linked urls +#+LaTeX_HEADER: filecolor = black % url which open local files +#+LaTeX_HEADER: } + +#+LaTeX_HEADER: %% modified reference function +#+LaTeX_HEADER: %% https://tex.stackexchange.com/a/438998 +#+LaTeX_HEADER: \newcommand\eref[1]{equation~(\ref{#1})} +#+LaTeX_HEADER: \newcommand\tref[1]{table~\ref{#1}} +#+LaTeX_HEADER: \newcommand\fref[1]{figure~\ref{#1}} + +#+LaTeX_HEADER: %% 1.5 line spacing +#+LaTeX_HEADER: \setstretch{1.5} + +** Info :ignore_heading: + +#+LaTeX_HEADER: %% The title of Thesis +#+LaTeX_HEADER: \newcommand{\thesisTitle}{How to make a thesis following the guideline with more text to have two lines} +#+LaTeX_HEADER: %% Number of Volume, if more than one +#+LaTeX_HEADER: %% not sure how it works out with latex tbh +#+LaTeX_HEADER: \newcommand{\numberVolume}{2} +#+LaTeX_HEADER: %% The number of this volume +#+LaTeX_HEADER: \newcommand{\actualVolume}{1} +#+LaTeX_HEADER: %% The author's name (you) +#+LaTeX_HEADER: \newcommand{\authorName}{A Good Name} +#+LaTeX_HEADER: %% Distinctions/Qualifications if desired +#+LaTeX_HEADER: \newcommand{\distinction}{The awesome} +#+LaTeX_HEADER: %% The qualification +#+LaTeX_HEADER: \newcommand{\degreeQualification}{Doctor of Philosophy} +#+LaTeX_HEADER: %% The institution +#+LaTeX_HEADER: \newcommand{\institution}{Some weird institute no one ever heard about} +#+LaTeX_HEADER: %% The school +#+LaTeX_HEADER: \newcommand{\school}{School of Latex and Writing} +#+LaTeX_HEADER: \newcommand{\university}{Heriot-Watt University} +#+LaTeX_HEADER: %% Month of submission +#+LaTeX_HEADER: \newcommand{\monthDate}{September} +#+LaTeX_HEADER: %% Year of submission +#+LaTeX_HEADER: \newcommand{\yearDate}{2042} + +** Acronyms :ignore_heading: + +#+LaTeX_HEADER: \newacronym{gcd}{GCD}{Greatest Common Divisor} +#+LaTeX_HEADER: \newacronym{lcm}{LCM}{Least Common Multiple} + +** Packages 2 :ignore_heading: + +#+LaTeX_HEADER: \usepackage{subfiles} + +** Titlepage :ignore_heading: #+LaTeX: \pagestyle{empty} -#+LaTeX: \input{preliminaries/1-titlepages} -#+LaTeX: \clearpage -#+LaTeX: % % remove this line if you don't want pagination on preliminary pages -#+LaTeX: % % also read the comment below, for table of content and other -#+LaTeX: % \pagestyle{preliminary} -#+LaTeX: \input{preliminaries/2-abstract} -#+LaTeX: \clearpage -#+LaTeX: %\input{Preliminaries/3-dedication} -#+LaTeX: %\clearpage -#+LaTeX: \input{preliminaries/4-acknowledgments} +# #+LaTeX: \input{preliminaries/1-titlepages} + +#+BEGIN_LATEX +\begin{center} +\vspace*{15pt}\par +\setstretch{1} +% \hrule +% \vspace{10pt}\par +\begin{spacing}{1.8} +%% you can replace by \MakeUppercase if you want uppercase +{\Large\bfseries\MakeLowercase{\capitalisewords{\thesisTitle}}}\\ +\end{spacing} +% \hrule +% This thesis is composed of \numberVolume volumes. This one is the number \actualVolume. + +\vspace{40pt}\par +\includegraphics[width=140pt]{Figures/logo.png}\\ +\vspace{40pt}\par + + +{\itshape\fontsize{15.5pt}{19pt}\selectfont by\\}\vspace{15pt}\par + +{ +\Large \authorName +% , \distinction +}\vspace{55pt}\par + +{ +\large Submitted for the degree of \\ \vspace{8pt} \Large\slshape\degreeQualification\\ +} + +\vspace{35pt}\par + +{\scshape\setstretch{1.5} \institution\\ \school\\ \university\\ +} + +\vspace{50pt}\par + + +{\large \monthDate\ \yearDate} + +\vfill + +\begin{flushleft} +\setstretch{1.4}\small +The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. +\end{flushleft} +\end{center} + +#+END_LATEX + +** Abstract :ignore_heading: + +# remove this line if you don't want pagination on preliminary pages +# also read the comment below, for table of content and other +# #+LaTeX: % \pagestyle{preliminary} + +#+BEGIN_LATEX +\clearpage +\begin{center} +\LARGE\textbf {Abstract} +\end{center} +\vspace{5pt} + +\noindent +In accordance with the Academic Regulations the thesis must contain an abstract preferably not exceeding 200 words, bound in to precede the thesis. The abstract should appear on its own, on a single page. The format should be the same as that of the main text. The abstract should provide a synopsis of the thesis and shall state clearly the nature and scope of the research undertaken and of the contribution made to the knowledge of the subject treated. There should be a brief statement of the method of investigation where appropriate, an outline of the major divisions or principal arguments of the work and a summary of any conclusions reached. The abstract must follow the Title Page. +#+END_LATEX + +** Dedication & Acknowledgements :ignore_heading: + +#+BEGIN_LATEX +\clearpage +\begin{center} +\LARGE\textbf {Dedication} +\end{center} +\vspace{5pt} + +If a dedication is included then it should be immediately after the Abstract page.\par +I don't what it is actually. +#+END_LATEX + +#+BEGIN_LATEX +\clearpage +\begin{center} +\LARGE\textbf {Acknowledgements} +\end{center} +\vspace{5pt} + +\noindent I wanna thanks all coffee and tea manufacturers and sellers that made the completion of this work possible. +#+END_LATEX + +** COMMENT Declaration :ignore_heading: #+LaTeX: \clearpage #+LaTeX: % % read about declaration in file #+LaTeX: % % \input{Preliminaries/5-declaration} @@ -57,10 +329,12 @@ #+LaTeX: \end{refsection} #+LaTeX: } +** End of Preliminaries :ignore_heading: #+LaTeX: \clearpage #+LaTeX: \pagestyle{chapter} + * Chapters ** Introduction @@ -80,9 +354,177 @@ Stellites are a cobalt-base superalloy used in aggresive service environments du Originating in 1907 with Elwood Haynes's development of alloys like Stellite 6, Stellites quickly found use in orthopedic implants, machine tools, and nuclear components, and new variations on the original CoCrWC and CoCrMoC alloys are spreading to new sectors like oil & gas and chemical processing \cite{malayogluComparingPerformanceHIPed2003, ahmedStructurePropertyRelationships2014}. -Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, and 0.1-3.3 wt C, with a microstructure consisting of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., $M_{7}C_{3}$, $M_{23}C_{6}$), and W/Mo (e.g. $MC$, $M_{6}C$ ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. +*** Paragraph: Impact of Composition, Microstructure, and Processing on Corrosion and Cavitation Performance :ignore_heading: + +Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, 0.1-3.3 wt C, and optional trace elements of Fe, Ni, Si, P, S, B, Ln, Mn, as seen in Table \ref{tab:stellite_composition} \cite{ahmedMappingMechanicalProperties2023, alimardaniEffectLocalizedDynamic2010, ashworthMicrostructurePropertyRelationships1999, bunchCorrosionGallingResistant1989, davis2000nickel, desaiEffectCarbideSize1984, ferozhkhanMetallurgicalStudyStellite2017, pacquentinTemperatureInfluenceRepair2025, ratiaComparisonSlidingWear2019, zhangFrictionWearCharacterization2002}. The microstructure of Stellite alloys consists of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., $M_{7}C_{3}$, $M_{23}C_{6}$), and W/Mo (e.g. $MC$, $M_{6}C$ ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. + +**** Table: Show the table of stellite compositions :ignore_heading: + +# \begin{landscape} +# \begin{table} +# \caption{Stellite Compositions} +# \label{tab:stellite_composition} +# \begin{threeparttable} +# \begin{table}{lllllllllllllllll} + +#+BEGIN_LATEX +\begin{landscape} +\begin{ThreePartTable} +\centering +\caption{Stellite Compositions} +\label{tab:stellite_composition} + +\begin{longtable}{l|ll|ll|l|llllllll|lll} + +% \toprule & \multicolumn{2}{c}{Base} & \multicolumn{2}{c}{Refractory} & Carbon & \multicolumn{8}{c}{Others} & \multicolumn{3}{c}{} \\ + +\toprule +Alloy & +\textbf{Co} & \textbf{Cr} & \textbf{W} & \textbf{Mo} & \textbf{C} & \textbf{Fe} & +\textbf{Ni} & \textbf{Si} & \textbf{P} & \textbf{S} & \textbf{B} & \textbf{Ln} & +\textbf{Mn} & \textbf{Ref} & \textbf{Process Type} & \textbf{Observation} \\ + +\midrule +\multirow{4}{*}{Stellite 1} +& 47.7 & 30 & 13 & 0.5 & 2.5 & 3 & 1.5 & 1.3 & & & & & 0.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 48.6 & 33 & 12.5 & 0 & 2.5 & 1 & 1 & 1.3 & & & & & 0.1 & \cite{alimardaniEffectLocalizedDynamic2010} & & \\ +& 46.84 & 31.7 & 12.7 & 0.29 & 2.47 & 2.3 & 2.38 & 1.06 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ + +\midrule +\multirow{2}{*}{Stellite 3} +& 50.5 & 33 & 14 & & 2.5 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ +& 49.24 & 29.57 & 12.07 & 0.67 & 2.52 & 2.32 & 1.07 & 1.79 & & & & & 0.75 & \cite{ratiaComparisonSlidingWear2019} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ + +\midrule +\multirow{5}{*}{Stellite 4} +& 45.43 & 30 & 14 & 1 & 0.57 & 3 & 3 & 2 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 51.5 & 30 & 14 & & 1 & 1 & 2 & 0.5 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ +& 51.9 & 33 & 14 & & 1.1 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ +& 49.41 & 31 & 14 & 0.12 & 0.67 & 2.16 & 1.82 & 1.04 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ +& 50.2 & 29.8 & 14.4 & 0 & 0.7 & 1.9 & 1.9 & 0.8 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +\midrule +\multirow{10}{*}{Stellite 6} +& 51.5 & 28.5 & 4.5 & 1.5 & 1 & 5 & 3 & 2 & & & 1 & & 2 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 63.81 & 27.08 & 5.01 & & 0.96 & 0.73 & 0.87 & 1.47 & & & & & 0.07 & \cite{ratiaComparisonSlidingWear2019} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ +& 60.3 & 29 & 4.5 & & 1.2 & 2 & 2 & 1 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ +& 61.7 & 27.5 & 4.5 & 0.5 & 1.15 & 1.5 & 1.5 & 1.15 & & & & & 0.5 & \cite{bunchCorrosionGallingResistant1989} & & \\ +& 58.46 & 29.5 & 4.6 & 0.22 & 1.09 & 2.09 & 2.45 & 1.32 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ +& 58.04 & 30.59 & 4.72 & & 1.24 & 2.03 & 1.87 & 0.80 & 0.01 & 0.01 & & & & \cite{ferozhkhanMetallurgicalStudyStellite2017} & PTAW\tnote{e} & OES \\ +& 55.95 & 27.85 & 3.29 & & 0.87 & 6.24 & 3.63 & 1.23 & 0.01 & 0.01 & & & 0.45 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & GTAW\tnote{d} & OES \\ +& 52.40 & 30.37 & 3.57 & & 0.96 & 6.46 & 3.93 & 1.70 & 0.01 & 0.01 & & & 0.3 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & SMAW\tnote{c} & OES \\ +& 60.3 & & 31.10 & 4.70 & 0.30 & 1.10 & 1.70 & 1.50 & 1.30 & & 0.00 & & 0.3 & \cite{pacquentinTemperatureInfluenceRepair2025} & LP-DED & ICP-AES \& GDMS \\ +& 60.6 & 27.7 & 5 & 0 & 1.2 & 1.9 & 2 & 1.3 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +% \midrule +% Stellite 7 +% & 64 & 25.9 & 4.9 & 0 & 0.5 & 1.5 & 1.1 & 1.1 & & & & & 1 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +\midrule +\multirow{2}{*}{Stellite 12} +& 53.6 & 30 & 8.3 & & 1.4 & 3 & 1.5 & 0.7 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 55.22 & 29.65 & 8.15 & 0.2 & 1.49 & 2.07 & 2.04 & 0.91 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES \\ + +\midrule +Stellite 19 + & 50.94 & 31.42 & 10.08 & 0.79 & 2.36 & 1.82 & 2 & 0.4 & & & 0.09 & & 0.1 & \cite{desaiEffectCarbideSize1984} & & \\ + +\midrule +\multirow{2}{*}{Stellite 20} +& 41.05 & 33 & 17.5 & & 2.45 & 2.5 & 2.5 & & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 43.19 & 31.85 & 16.3 & 0.27 & 2.35 & 2.5 & 2.28 & 1 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES \\ + +\midrule +\multirow{2}{*}{Stellite 21} +& 59.493 & 27 & & 5.5 & 0.25 & 3 & 2.75 & 1 & & & 0.007 & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 60.6 & 26.9 & 0 & 5.7 & 0.2 & 1.3 & 2.7 & 1.9 & & & & & 0.7 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +% \midrule +% Stellite 22 +% & 54 & 27 & & 11 & 0.25 & 3 & 2.75 & 1 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 23 +% & 65.5 & 24 & 5 & & 0.4 & 1 & 2 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 25 +% & 49.4 & 20 & 15 & & 0.1 & 3 & 10 & 1 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 27 +% & 35 & 25 & & 5.5 & 0.4 & 1 & 32 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 30 +% & 50.5 & 26 & & 6 & 0.45 & 1 & 15 & 0.6 & & & & & 0.6 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +\midrule +\multirow{2}{*}{Stellite 31} +& 57.5 & 22 & 7.5 & & 0.5 & 1.5 & 10 & 0.5 & & & & & 0.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 52.9 & 25.3 & 7.8 & 0 & 0.5 & 1.1 & 11.4 & 0.6 & & & & & 0.4 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +% \midrule +% Stellite 80 +% & 44.6 & 33.5 & 19 & & 1.9 & & & & & & 1 & & & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 188 +% & 37.27 & 22 & 14 & & 0.1 & 3 & 22 & 0.35 & & & & 0.03 & 1.25 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +\midrule +\multirow{2}{*}{Stellite 190} +& 46.7 & 27 & 14 & 1 & 3.3 & 3 & 3 & 1 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 48.72 & 27.25 & 14.4 & 0.2 & 3.21 & 2.1 & 2.81 & 1 & & & & & 0.31 & \cite{ahmedMappingMechanicalProperties2023} +& HIPed\tnote{a} & ICP-OES\tnote{*} \\ + +% \midrule +% Stellite 300 +% & 44.5 & 22 & 32 & & 1.5 & & & & & & & & & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 694 +% & 45 & 28 & 19 & & 1 & 5 & & 1 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 703 +% & 44.6 & 32 & & 12 & 2.4 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 706 +% & 55.8 & 29 & & 5 & 1.2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 712 +% & 51.5 & 29 & & 8.5 & 2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 720 +% & 37.2 & 33 & & 18 & 2.5 & 3 & 3 & 1.5 & & & 0.3 & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +\end{longtable} +\begin{TableNotes} + \item[a] Hot Isostatic Pressing + \item[b] Inductively coupled plasma atomic emission spectroscopy + \item[c] Shielded metal arc welding + \item[d] Gas tungsten Arc Welding + \item[e] Plasma transfered Arc Welding +\end{TableNotes} +\end{ThreePartTable} +\end{landscape} +#+END_LaTeX + +# \end{tabular} +# \begin{tablenotes} +# \item[*] The footnote text. +# \item[a] Another footnote. +# \end{tablenotes} +# \end{threeparttable} +# \end{table} +# \end{landscape} + *** Paragraph 2: Fundamental Mechanisms of Corrosion and Cavitation Resistance :ignore_heading: #+BEGIN_COMMENT @@ -96,169 +538,8 @@ Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, and 0.1-3.3 wt C, with a mic The remarkable ability of Stellite alloys to withstand these specific challenges stems from key metallurgical features. Their corrosion resistance is primarily attributed to a high chromium content, typically 20-30 wt.%, which promotes the formation of a highly stable, tenacious, and self-healing chromium-rich passive oxide film on the material's surface; this film acts as a barrier isolating the underlying alloy from the corrosive environment. Alloying elements such as molybdenum and tungsten can further enhance this passivity, particularly improving resistance to localized corrosion phenomena like pitting and crevice corrosion in aggressive media. Concurrently, their outstanding cavitation resistance is largely derived from the unique behavior of the cobalt-rich matrix, which can undergo a stress-induced crystallographic transformation from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. This transformation, often facilitated by mechanical twinning, effectively absorbs the intense, localized impact energy from collapsing cavitation bubbles and leads to significant work hardening, thereby impeding material detachment and erosion. -*** Paragraph 3: Impact of Composition, Microstructure, and Processing on Corrosion and Cavitation Performance :ignore_heading: - -Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, and 0.1-3.3 wt C, with a microstructure consisting of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., $M_{7}C_{3}$, $M_{23}C_{6}$), and W/Mo (e.g. $MC$, $M_{6}C$ ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. - -*** Table: Show the table of stellite compositions - - - - -# The precise tailoring of composition, microstructure, and processing is crucial for optimizing both corrosion and cavitation performance in Stellite alloys. Variations in carbon content, along with levels of carbide-forming elements like chromium, tungsten, and molybdenum, dictate the volume fraction, type (e.g., M$_{7}$C$_{3}$, M$_{23}$C$_{6}$, M$_{6}$C), and morphology of hard carbide phases. While these carbides contribute to wear resistance, their presence can influence corrosion if they lead to chromium depletion in the adjacent matrix or create galvanic cells; for cavitation, they can act as erosion-resistant entities or, if cohesion with the matrix is poor, as initiation sites for material loss. Consequently, achieving a microstructure with a well-dispersed array of fine carbides within a tough, corrosion-resistant matrix, often with a stable fcc phase favored for corrosion resistance, is a primary objective. Manufacturing routes such as powder metallurgy, particularly Hot Isostatic Pressing (HIPing), are increasingly employed over traditional casting to achieve greater microstructural homogeneity, eliminate porosity, and ensure consistent properties vital for resisting both uniform and localized corrosion, as well as cavitation damage. Surface engineering techniques, like plasma transferred arc (PTA) weld overlays, can also be used to apply Stellite layers with specifically tailored microstructures for enhanced surface protection against these degradation modes. - -*** Table: Show the table of stellite compositions - -#+BEGIN_LaTeX -\begin{landscape} -\begin{table} -\caption{Stellite Compositions} -\label{tab:stellite_composition} -\begin{threeparttable} -\begin{tabular}{lllllllllllllllll} - & - \multicolumn{2}{c}{Base} & - \multicolumn{2}{c}{Refractory} & - Carbon & - \multicolumn{8}{c}{Others} & - & - & - \\ -Alloy & - \multicolumn{1}{c}{\textbf{Co}} & - \multicolumn{1}{c}{\textbf{Cr}} & - \multicolumn{1}{c}{\textbf{W}} & - \multicolumn{1}{c}{\textbf{Mo}} & - \multicolumn{1}{c}{\textbf{C}} & - \multicolumn{1}{c}{\textbf{Fe}} & - \multicolumn{1}{c}{\textbf{Ni}} & - \multicolumn{1}{c}{\textbf{Si}} & - \multicolumn{1}{c}{\textbf{P}} & - \multicolumn{1}{c}{\textbf{S}} & - \multicolumn{1}{c}{\textbf{B}} & - \multicolumn{1}{c}{\textbf{Ln}} & - \multicolumn{1}{c}{\textbf{Mn}} & - \multicolumn{1}{c}{\textbf{Ref}} & - \multicolumn{1}{c}{\textbf{Process Type}} & - \multicolumn{1}{c}{\textbf{Observation}} \\ - -\hline -\multirow{4}{*}{Stellite 1} -& 41.1 & 30.5 & 12.5 & & 2.4 & <5 & <3.5 & <2 & & & <1 & & <2 & \cite{davis2000nickel} & & \\ -& 47.7 & 30 & 13 & 0.5 & 2.5 & 3 & 1.5 & 1.3 & & & & & 0.5 & \cite{davis2000nickel} & & \\ -& 48.6 & 33 & 12.5 & 0 & 2.5 & 1 & 1 & 1.3 & & & & & 0.1 & \cite{alimardaniEffectLocalizedDynamic2010} & & \\ -& 46.84 & 31.7 & 12.7 & 0.29 & 2.47 & 2.3 & 2.38 & 1.06 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ - -\hline -\multirow{2}{*}{Stellite 3} -& 50.5 & 33 & 14 & & 2.5 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ -& 49.24 & 29.57 & 12.07 & 0.67 & 2.52 & 2.32 & 1.07 & 1.79 & & & & & 0.75 & \cite{ratiaComparisonSlidingWear2019} & HIPed & ICP-OES and combustion infrared detection for C \\ - -\hline -\multirow{5}{*}{Stellite 4} -& 45.43 & 30 & 14 & 1 & 0.57 & 3 & 3 & 2 & & & & & 1 & \cite{davis2000nickel} & & \\ -& 51.5 & 30 & 14 & & 1 & 1 & 2 & 0.5 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ -& 51.9 & 33 & 14 & & 1.1 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ -& 49.41 & 31 & 14 & 0.12 & 0.67 & 2.16 & 1.82 & 1.04 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ -& 50.2 & 29.8 & 14.4 & 0 & 0.7 & 1.9 & 1.9 & 0.8 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -\hline -\multirow{10}{*}{Stellite 6} -& 51.5 & 28.5 & 4.5 & 1.5 & 1 & 5 & 3 & 2 & & & 1 & & 2 & \cite{davis2000nickel} & & \\ -& 63.81 & 27.08 & 5.01 & & 0.96 & 0.73 & 0.87 & 1.47 & & & & & 0.07 & \cite{ratiaComparisonSlidingWear2019} & HIPed & ICP-OES and combustion infrared detection for C \\ -& 60.3 & 29 & 4.5 & & 1.2 & 2 & 2 & 1 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ -& 61.7 & 27.5 & 4.5 & 0.5 & 1.15 & 1.5 & 1.5 & 1.15 & & & & & 0.5 & \cite{bunchCorrosionGallingResistant1989} & & \\ -& 58.46 & 29.5 & 4.6 & 0.22 & 1.09 & 2.09 & 2.45 & 1.32 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ -& 58.04 & 30.59 & 4.72 & & 1.24 & 2.03 & 1.87 & 0.80 & 0.01 & 0.01 & & & & \cite{ferozhkhanMetallurgicalStudyStellite2017} & PTAW & OES \\ -& 55.95 & 27.85 & 3.29 & & 0.87 & 6.24 & 3.63 & 1.23 & 0.01 & 0.01 & & & 0.45 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & GTAW & OES \\ -& 52.40 & 30.37 & 3.57 & & 0.96 & 6.46 & 3.93 & 1.70 & 0.01 & 0.01 & & & 0.3 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & SMAW & OES \\ -& 60.3 & & 31.10 & 4.70 & 0.30 & 1.10 & 1.70 & 1.50 & 1.30 & & 0.00 & & 0.3 & \cite{pacquentinTemperatureInfluenceRepair2025} & LP-DED & ICP-AES \& GDMS \\ -& 60.6 & 27.7 & 5 & 0 & 1.2 & 1.9 & 2 & 1.3 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -\hline -Stellite 7 -& 64 & 25.9 & 4.9 & 0 & 0.5 & 1.5 & 1.1 & 1.1 & & & & & 1 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -\hline -\multirow{2}{*}{Stellite 12} -& 53.6 & 30 & 8.3 & & 1.4 & 3 & 1.5 & 0.7 & & & & & 1.5 & \cite{davis2000nickel} & & \\ -& 55.22 & 29.65 & 8.15 & 0.2 & 1.49 & 2.07 & 2.04 & 0.91 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ - -Stellite 19 -& 50.94 & 31.42 & 10.08 & 0.79 & 2.36 & 1.82 & 2 & 0.4 & & & 0.09 & & 0.1 & \cite{desaiEffectCarbideSize1984} & & \\ - -\multirow{2}{*}{Stellite 20} -& 41.05 & 33 & 17.5 & & 2.45 & 2.5 & 2.5 & & & & & & 1 & \cite{davis2000nickel} & & \\ -& 43.19 & 31.85 & 16.3 & 0.27 & 2.35 & 2.5 & 2.28 & 1 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ - - -\multirow{2}{*}{Stellite 21} -& 59.493 & 27 & & 5.5 & 0.25 & 3 & 2.75 & 1 & & & 0.007 & & 1 & \cite{davis2000nickel} & & \\ -& 60.6 & 26.9 & 0 & 5.7 & 0.2 & 1.3 & 2.7 & 1.9 & & & & & 0.7 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -Stellite 22 -& 54 & 27 & & 11 & 0.25 & 3 & 2.75 & 1 & & & & & 1 & \cite{davis2000nickel} & & \\ - -Stellite 23 -& 65.5 & 24 & 5 & & 0.4 & 1 & 2 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & & \\ - -Stellite 25 -& 49.4 & 20 & 15 & & 0.1 & 3 & 10 & 1 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 27 -& 35 & 25 & & 5.5 & 0.4 & 1 & 32 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & & \\ - -Stellite 30 -& 50.5 & 26 & & 6 & 0.45 & 1 & 15 & 0.6 & & & & & 0.6 & \cite{davis2000nickel} & & \\ - -\multirow{2}{*}{Stellite 31} -& 57.5 & 22 & 7.5 & & 0.5 & 1.5 & 10 & 0.5 & & & & & 0.5 & \cite{davis2000nickel} & & \\ -& 52.9 & 25.3 & 7.8 & 0 & 0.5 & 1.1 & 11.4 & 0.6 & & & & & 0.4 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -Stellite 80 -& 44.6 & 33.5 & 19 & & 1.9 & & & & & & 1 & & & \cite{davis2000nickel} & & \\ - -Stellite 188 -& 37.27 & 22 & 14 & & 0.1 & 3 & 22 & 0.35 & & & & 0.03 & 1.25 & \cite{davis2000nickel} & & \\ - -\multirow{2}{*}{Stellite 190} -& 46.7 & 27 & 14 & 1 & 3.3 & 3 & 3 & 1 & & & & & 1 & \cite{davis2000nickel} & & \\ -& 48.72 & 27.25 & 14.4 & 0.2 & 3.21 & 2.1 & 2.81 & 1 & & & & & 0.31 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{*} \\ - -Stellite 300 -& 44.5 & 22 & 32 & & 1.5 & & & & & & & & & \cite{davis2000nickel} & & \\ - -Stellite 694 -& 45 & 28 & 19 & & 1 & 5 & & 1 & & & & & 1 & \cite{davis2000nickel} & & \\ - -Stellite 703 -& 44.6 & 32 & & 12 & 2.4 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 706 -& 55.8 & 29 & & 5 & 1.2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 712 -& 51.5 & 29 & & 8.5 & 2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 720 -& 37.2 & 33 & & 18 & 2.5 & 3 & 3 & 1.5 & & & 0.3 & & 1.5 & \cite{davis2000nickel} & & \\ - -\end{tabular} -\begin{tablenotes} -\item[*] The footnote text. -\item[a] Another footnote. -\end{tablenotes} -\end{threeparttable} -\end{table} -\end{landscape} -#+END_LaTeX - *** Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation :ignore: - - *** Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance :ignore: - - *** Paragraph 6: Influence of HIPing :ignore: Compared with the case alloys, the HIPed alloys had relatively finer, rounded, and distributed carbides. @@ -287,11 +568,11 @@ Compared with the case alloys, the HIPed alloys had relatively finer, rounded, a # \chaptermark{Cavitation Erosion} % optional for veryy long chapter, you can rename what appear in the header -%% have a mini table of content at the start of the chapter -{ -\hypersetup{linkcolor=black} -\minitoc -} +# %% have a mini table of content at the start of the chapter +# { +# \hypersetup{linkcolor=black} +# \minitoc +# } %cite:@Franc2004265, @Romo201216, @Kumar2024, @Kim200685, @Gao2024, @20221xix, @Usta2023, @Cheng2023, @Zheng2022 diff --git a/Thesis.pdf b/Thesis.pdf index 6f72259..cac01c8 100644 --- a/Thesis.pdf +++ b/Thesis.pdf @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:e768a7480c7f5f4d9296dcb38053709c0338df7d9c82af92db9e48d304b0094d -size 219752 +oid sha256:732b0a7ed773d6c1bf2a7e4ec2fb580157deba9dc353e1c0ed9044be24f08de5 +size 140349 diff --git a/Thesis.tex b/Thesis.tex index e1e5909..ba426a3 100644 --- a/Thesis.tex +++ b/Thesis.tex @@ -1,4 +1,4 @@ -% Created 2025-05-11 ح 23:09 +% Created 2025-05-12 ن 00:31 % Intended LaTeX compiler: pdflatex \documentclass[11pt]{report} \usepackage[utf8]{inputenc} @@ -12,17 +12,173 @@ \usepackage{amssymb} \usepackage{capt-of} \usepackage{hyperref} -\usepackage{booktabs} -\graphicspath{{expt/}} -\input{I-packages} -\input{I-config} -\input{I-info} -\input{I-glossary} -\input{I-packages-2} -% some package need to be loaded last in preamble \usepackage{multirow} \usepackage[flushleft]{threeparttable} % http://ctan.org/pkg/threeparttable \usepackage{booktabs,caption} +\graphicspath{{expt/}} +\usepackage{pdflscape} +\usepackage{longtable} +\usepackage{threeparttablex} +\usepackage{multirow} +\usepackage{caption} +\usepackage{booktabs} % Added for nicer rules +\usepackage{graphicx} % include graphics +\usepackage{fancyhdr} % layout +\usepackage[english]{babel} +%\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} % font +\usepackage{csquotes} +%\usepackage[defernumbers=true, sorting=none]{biblatex} +\usepackage[ backend=biber, maxbibnames=999]{biblatex} + +\usepackage{setspace} % spacing +% \usepackage[left=4cm,right=2cm,top=2cm,bottom=2cm]{geometry} +\usepackage{mathptmx} % looks like times new roman +\usepackage{slantsc} +\usepackage{titlesec} +\usepackage{mfirstuc} +\usepackage{calc}% http://ctan.org/pkg/calc +\usepackage[acronym, nonumberlist]{glossaries} % https://www.overleaf.com/learn/latex/Glossaries +\usepackage{hyperref} % https://ctan.org/pkg/hyperref +\usepackage{pdfpages} +\usepackage{float} +\usepackage{minitoc} +\usepackage{pdflscape} +%% prefer than direct use in usepackage geometry +%% A4 layout in point is % 595x842 +%% default value +\setlength{\hoffset}{0pt} +\setlength{\voffset}{0pt} +%% height +%% 72 - 60 + 20 + 25 = 57 +\setlength{\topmargin}{-60pt} +\setlength{\headheight}{20pt} +\setlength{\headsep}{25pt} +\setlength{\footskip}{30pt} +%% width +%% 72 + 32 + 10 = 114pt = 40mm +\setlength{\oddsidemargin}{32pt} +\setlength{\evensidemargin}{32pt} +\setlength{\marginparsep}{10pt} +%% size text +\setlength{\textheight}{728pt} +\setlength{\textwidth}{425pt} +%% style +%% preliminary, just roman pagination + empty header +\fancypagestyle{preliminary}{ +\renewcommand{\headrulewidth}{0pt} +\fancyhead[RCL]{} +\pagenumbering{Roman} +} +%% chapter/classic text style +\fancypagestyle{chapter}{ +%% title of the chapter, left header, no uppercase, 10 pt, italics, no bold +\fancyhead[L]{\normalfont\itshape\fontsize{10pt}{12pt}\selectfont\nouppercase{\leftmark}} +\fancyhead[R]{} + +\fancyfoot[C]{\thepage} +\renewcommand{\headrulewidth}{0.4pt} +\renewcommand{\footrulewidth}{0pt} +\pagenumbering{arabic} +} +%% define length and scaling for baseline +\newcommand{\headingBaseline}{12} +\newcommand{\headingBaselineDiv}{10} +\newlength{\chapterFontSize} +\newlength{\sectionFontSize} +\newlength{\subsectionFontSize} +\newlength{\chapterBaseline} +\newlength{\sectionBaseline} +\newlength{\subsectionBaseline} +%% change those value if you want to change the chapter/section/subsection font size +\setlength{\chapterFontSize}{14pt} +\setlength{\sectionFontSize}{12pt} +\setlength{\subsectionFontSize}{12pt} +%% automatic computation for baseline, rule of thumb is 1.2 +\setlength{\chapterBaseline}{ \chapterFontSize * \headingBaseline / \headingBaselineDiv} +\setlength{\sectionBaseline}{ \sectionFontSize * \headingBaseline / \headingBaselineDiv} +\setlength{\subsectionBaseline}{ \subsectionFontSize * \headingBaseline / \headingBaselineDiv} +%% headings +%% Chapter, 14-point, bold +\titleformat{\chapter}[display] +{\normalfont\bfseries\fontsize{\chapterFontSize}{\chapterBaseline}\selectfont}{\chaptertitlename\ \thechapter}{14pt}{} +%% capitalised initial letter, +% \titleformat{\chapter}[display] +% {\normalfont\bfseries\fontsize{\chapterFontSize}{\chapterBaseline}\selectfont}{\chaptertitlename\ \thechapter}{14pt}{\capitalisewords} +%% left|above|below +\titlespacing{\chapter}{0pt}{10pt}{25pt} +%% Section, 12-point +\titleformat{\section}[hang] +{\normalfont\bfseries\fontsize{\sectionFontSize}{\sectionBaseline}\selectfont}{\thesection}{5pt}{} +%% capitalised initial letter +% \titleformat{\section}[hang] +% {\normalfont\bfseries\fontsize{\sectionFontSize}{\sectionBaseline}\selectfont}{\thesection}{5pt}{\capitalisewords} +%% left|above|below +\titlespacing{\section}{0pt}{25pt}{15pt} +%% Subsection, 12-point, italic +\titleformat{\subsection}[hang] +{\normalfont\bfseries\itshape\fontsize{\subsectionFontSize}{\subsectionBaseline}\selectfont}{\thesubsection}{5pt}{} +% \titleformat{\subsection}[hang] +% {\normalfont\bfseries\itshape\fontsize{\subsectionFontSize}{\subsectionBaseline}\selectfont\MakeLowercase}{\thesubsection}{5pt}{\makefirstuc} +%% left|above|below +\titlespacing{\subsection}{0pt}{20pt}{10pt} +%% table of content +\renewcommand{\contentsname}{Table of Contents} +\setcounter{tocdepth}{2} +\setcounter{secnumdepth}{2} +%% list of figure +\renewcommand*\listfigurename{Figure table} +%% init gloassaries +%% noidx cause otherwise we have to do a normal glossary, compile, then remove it so it is cached +%% because we only use acronym +\makenoidxglossaries +%% bibliography config +%% https://tex.stackexchange.com/a/6977 +\DeclareBibliographyCategory{cited} +\AtEveryCitekey{\addtocategory{cited}{\thefield{entrykey}}} +\addbibresource{Bibliography.bib} +\addbibresource{BibMine.bib} +\addbibresource{references.bib} +%% hyperref setup +\hypersetup{ +colorlinks = true, +linkcolor = blue, % normal internal links, like ref, can be black tbh +citecolor = blue, % bibliographical links +urlcolor = blue, % linked urls +filecolor = black % url which open local files +} +%% modified reference function +%% https://tex.stackexchange.com/a/438998 +\newcommand\eref[1]{equation~(\ref{#1})} +\newcommand\tref[1]{table~\ref{#1}} +\newcommand\fref[1]{figure~\ref{#1}} +%% 1.5 line spacing +\setstretch{1.5} +%% The title of Thesis +\newcommand{\thesisTitle}{How to make a thesis following the guideline with more text to have two lines} +%% Number of Volume, if more than one +%% not sure how it works out with latex tbh +\newcommand{\numberVolume}{2} +%% The number of this volume +\newcommand{\actualVolume}{1} +%% The author's name (you) +\newcommand{\authorName}{A Good Name} +%% Distinctions/Qualifications if desired +\newcommand{\distinction}{The awesome} +%% The qualification +\newcommand{\degreeQualification}{Doctor of Philosophy} +%% The institution +\newcommand{\institution}{Some weird institute no one ever heard about} +%% The school +\newcommand{\school}{School of Latex and Writing} +\newcommand{\university}{Heriot-Watt University} +%% Month of submission +\newcommand{\monthDate}{September} +%% Year of submission +\newcommand{\yearDate}{2042} +\newacronym{gcd}{GCD}{Greatest Common Divisor} +\newacronym{lcm}{LCM}{Least Common Multiple} +\usepackage{subfiles} \date{} \title{} \hypersetup{ @@ -32,234 +188,275 @@ pdfsubject={}, pdfcreator={Emacs 30.1 (Org mode 9.7.29)}, pdflang={English}} -\usepackage{biblatex} - \begin{document} \dominitoc + + \pagestyle{empty} -\input{preliminaries/1-titlepages} -\clearpage -% % remove this line if you don't want pagination on preliminary pages -% % also read the comment below, for table of content and other -% \pagestyle{preliminary} -\input{preliminaries/2-abstract} -\clearpage -%\input{Preliminaries/3-dedication} -%\clearpage -\input{preliminaries/4-acknowledgments} -\clearpage -% % read about declaration in file -% % \input{Preliminaries/5-declaration} -\includepdf[pages=-]{preliminaries/5-declaration.pdf} -{ + +\begin{LATEX} +\begin{center} +\vspace*{15pt}\par \setstretch{1} -\hypersetup{linkcolor=black} -\tableofcontents -\listoftables % optional -\listoffigures % optional -\glsaddall % this is to include all acronym. You can do a sort of citation for acronym and include only the one you use, Look at the glossary package for details. -\printnoidxglossary[type=\acronymtype, title=Glossary] % optional -%% put your publications in BibMine.bib -%% They will be displayed here -\begin{refsection}[BibMine.bib] -\DeclareFieldFormat{labelnumberwidth}{#1} -\nocite{*} -\printbibliography[omitnumbers=true,title={List of Publications}] -\end{refsection} +% \hrule +% \vspace{10pt}\par +\begin{spacing}{1.8} +%% you can replace by \MakeUppercase if you want uppercase +{\Large\bfseries\MakeLowercase{\capitalisewords{\thesisTitle}}}\\ +\end{spacing} +% \hrule +% This thesis is composed of \numberVolume volumes. This one is the number \actualVolume. + +\vspace{40pt}\par +\includegraphics[width=140pt]{Figures/logo.png}\\ +\vspace{40pt}\par + + +{\itshape\fontsize{15.5pt}{19pt}\selectfont by\\}\vspace{15pt}\par + +{ +\Large \authorName +% , \distinction +}\vspace{55pt}\par + +{ +\large Submitted for the degree of \\ \vspace{8pt} \Large\slshape\degreeQualification\\ } +\vspace{35pt}\par + +{\scshape\setstretch{1.5} \institution\\ \school\\ \university\\ +} + +\vspace{50pt}\par + + +{\large \monthDate\ \yearDate} + +\vfill + +\begin{flushleft} +\setstretch{1.4}\small +The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. +\end{flushleft} +\end{center} +\end{LATEX} + + +\begin{LATEX} +\clearpage +\begin{center} +\LARGE\textbf {Abstract} +\end{center} +\vspace{5pt} + +\noindent +In accordance with the Academic Regulations the thesis must contain an abstract preferably not exceeding 200 words, bound in to precede the thesis. The abstract should appear on its own, on a single page. The format should be the same as that of the main text. The abstract should provide a synopsis of the thesis and shall state clearly the nature and scope of the research undertaken and of the contribution made to the knowledge of the subject treated. There should be a brief statement of the method of investigation where appropriate, an outline of the major divisions or principal arguments of the work and a summary of any conclusions reached. The abstract must follow the Title Page. +\end{LATEX} + + +\begin{LATEX} +\clearpage +\begin{center} +\LARGE\textbf {Dedication} +\end{center} +\vspace{5pt} + +If a dedication is included then it should be immediately after the Abstract page.\par +I don't what it is actually. +\end{LATEX} + +\begin{LATEX} +\clearpage +\begin{center} +\LARGE\textbf {Acknowledgements} +\end{center} +\vspace{5pt} + +\noindent I wanna thanks all coffee and tea manufacturers and sellers that made the completion of this work possible. +\end{LATEX} + \clearpage \pagestyle{chapter} \part{Chapters} -\label{sec:org3bdb98f} +\label{sec:org82d3bd9} \chapter{Introduction} -\label{sec:org28b34e8} +\label{sec:org2e0b8b2} Stellites are a cobalt-base superalloy used in aggresive service environments due to retention of strength, wear resistance, and oxidation resistance at high temperature \cite{ahmedStructurePropertyRelationships2014}. Originating in 1907 with Elwood Haynes's development of alloys like Stellite 6, Stellites quickly found use in orthopedic implants, machine tools, and nuclear components, and new variations on the original CoCrWC and CoCrMoC alloys are spreading to new sectors like oil \& gas and chemical processing \cite{malayogluComparingPerformanceHIPed2003, ahmedStructurePropertyRelationships2014}. -Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, and 0.1-3.3 wt C, with a microstructure consisting of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., \(M_{7}C_{3}\), \(M_{23}C_{6}\)), and W/Mo (e.g. \(MC\), \(M_{6}C\) ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. +Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, 0.1-3.3 wt C, and optional trace elements of Fe, Ni, Si, P, S, B, Ln, Mn, as seen in Table \ref{tab:stellite_composition} \cite{ahmedMappingMechanicalProperties2023, alimardaniEffectLocalizedDynamic2010, ashworthMicrostructurePropertyRelationships1999, bunchCorrosionGallingResistant1989, davis2000nickel, desaiEffectCarbideSize1984, ferozhkhanMetallurgicalStudyStellite2017, pacquentinTemperatureInfluenceRepair2025, ratiaComparisonSlidingWear2019, zhangFrictionWearCharacterization2002}. The microstructure of Stellite alloys consists of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., \(M_{7}C_{3}\), \(M_{23}C_{6}\)), and W/Mo (e.g. \(MC\), \(M_{6}C\) ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. + + +\begin{LATEX} +\begin{landscape} +\begin{ThreePartTable} +\centering +\caption{Stellite Compositions} +\label{tab:stellite_composition} + +\begin{longtable}{l|ll|ll|l|llllllll|lll} + +% \toprule & \multicolumn{2}{c}{Base} & \multicolumn{2}{c}{Refractory} & Carbon & \multicolumn{8}{c}{Others} & \multicolumn{3}{c}{} \\ + +\toprule +Alloy & +\textbf{Co} & \textbf{Cr} & \textbf{W} & \textbf{Mo} & \textbf{C} & \textbf{Fe} & +\textbf{Ni} & \textbf{Si} & \textbf{P} & \textbf{S} & \textbf{B} & \textbf{Ln} & +\textbf{Mn} & \textbf{Ref} & \textbf{Process Type} & \textbf{Observation} \\ + +\midrule +\multirow{4}{*}{Stellite 1} +& 47.7 & 30 & 13 & 0.5 & 2.5 & 3 & 1.5 & 1.3 & & & & & 0.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 48.6 & 33 & 12.5 & 0 & 2.5 & 1 & 1 & 1.3 & & & & & 0.1 & \cite{alimardaniEffectLocalizedDynamic2010} & & \\ +& 46.84 & 31.7 & 12.7 & 0.29 & 2.47 & 2.3 & 2.38 & 1.06 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ + +\midrule +\multirow{2}{*}{Stellite 3} +& 50.5 & 33 & 14 & & 2.5 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ +& 49.24 & 29.57 & 12.07 & 0.67 & 2.52 & 2.32 & 1.07 & 1.79 & & & & & 0.75 & \cite{ratiaComparisonSlidingWear2019} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ + +\midrule +\multirow{5}{*}{Stellite 4} +& 45.43 & 30 & 14 & 1 & 0.57 & 3 & 3 & 2 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 51.5 & 30 & 14 & & 1 & 1 & 2 & 0.5 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ +& 51.9 & 33 & 14 & & 1.1 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ +& 49.41 & 31 & 14 & 0.12 & 0.67 & 2.16 & 1.82 & 1.04 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ +& 50.2 & 29.8 & 14.4 & 0 & 0.7 & 1.9 & 1.9 & 0.8 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +\midrule +\multirow{10}{*}{Stellite 6} +& 51.5 & 28.5 & 4.5 & 1.5 & 1 & 5 & 3 & 2 & & & 1 & & 2 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 63.81 & 27.08 & 5.01 & & 0.96 & 0.73 & 0.87 & 1.47 & & & & & 0.07 & \cite{ratiaComparisonSlidingWear2019} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ +& 60.3 & 29 & 4.5 & & 1.2 & 2 & 2 & 1 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ +& 61.7 & 27.5 & 4.5 & 0.5 & 1.15 & 1.5 & 1.5 & 1.15 & & & & & 0.5 & \cite{bunchCorrosionGallingResistant1989} & & \\ +& 58.46 & 29.5 & 4.6 & 0.22 & 1.09 & 2.09 & 2.45 & 1.32 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{b} \\ +& 58.04 & 30.59 & 4.72 & & 1.24 & 2.03 & 1.87 & 0.80 & 0.01 & 0.01 & & & & \cite{ferozhkhanMetallurgicalStudyStellite2017} & PTAW\tnote{e} & OES \\ +& 55.95 & 27.85 & 3.29 & & 0.87 & 6.24 & 3.63 & 1.23 & 0.01 & 0.01 & & & 0.45 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & GTAW\tnote{d} & OES \\ +& 52.40 & 30.37 & 3.57 & & 0.96 & 6.46 & 3.93 & 1.70 & 0.01 & 0.01 & & & 0.3 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & SMAW\tnote{c} & OES \\ +& 60.3 & & 31.10 & 4.70 & 0.30 & 1.10 & 1.70 & 1.50 & 1.30 & & 0.00 & & 0.3 & \cite{pacquentinTemperatureInfluenceRepair2025} & LP-DED & ICP-AES \& GDMS \\ +& 60.6 & 27.7 & 5 & 0 & 1.2 & 1.9 & 2 & 1.3 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +% \midrule +% Stellite 7 +% & 64 & 25.9 & 4.9 & 0 & 0.5 & 1.5 & 1.1 & 1.1 & & & & & 1 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +\midrule +\multirow{2}{*}{Stellite 12} +& 53.6 & 30 & 8.3 & & 1.4 & 3 & 1.5 & 0.7 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 55.22 & 29.65 & 8.15 & 0.2 & 1.49 & 2.07 & 2.04 & 0.91 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES \\ + +\midrule +Stellite 19 + & 50.94 & 31.42 & 10.08 & 0.79 & 2.36 & 1.82 & 2 & 0.4 & & & 0.09 & & 0.1 & \cite{desaiEffectCarbideSize1984} & & \\ + +\midrule +\multirow{2}{*}{Stellite 20} +& 41.05 & 33 & 17.5 & & 2.45 & 2.5 & 2.5 & & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 43.19 & 31.85 & 16.3 & 0.27 & 2.35 & 2.5 & 2.28 & 1 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES \\ + +\midrule +\multirow{2}{*}{Stellite 21} +& 59.493 & 27 & & 5.5 & 0.25 & 3 & 2.75 & 1 & & & 0.007 & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 60.6 & 26.9 & 0 & 5.7 & 0.2 & 1.3 & 2.7 & 1.9 & & & & & 0.7 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +% \midrule +% Stellite 22 +% & 54 & 27 & & 11 & 0.25 & 3 & 2.75 & 1 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 23 +% & 65.5 & 24 & 5 & & 0.4 & 1 & 2 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 25 +% & 49.4 & 20 & 15 & & 0.1 & 3 & 10 & 1 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 27 +% & 35 & 25 & & 5.5 & 0.4 & 1 & 32 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 30 +% & 50.5 & 26 & & 6 & 0.45 & 1 & 15 & 0.6 & & & & & 0.6 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +\midrule +\multirow{2}{*}{Stellite 31} +& 57.5 & 22 & 7.5 & & 0.5 & 1.5 & 10 & 0.5 & & & & & 0.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 52.9 & 25.3 & 7.8 & 0 & 0.5 & 1.1 & 11.4 & 0.6 & & & & & 0.4 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed\tnote{a} & \\ + +% \midrule +% Stellite 80 +% & 44.6 & 33.5 & 19 & & 1.9 & & & & & & 1 & & & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 188 +% & 37.27 & 22 & 14 & & 0.1 & 3 & 22 & 0.35 & & & & 0.03 & 1.25 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +\midrule +\multirow{2}{*}{Stellite 190} +& 46.7 & 27 & 14 & 1 & 3.3 & 3 & 3 & 1 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ +& 48.72 & 27.25 & 14.4 & 0.2 & 3.21 & 2.1 & 2.81 & 1 & & & & & 0.31 & \cite{ahmedMappingMechanicalProperties2023} +& HIPed\tnote{a} & ICP-OES\tnote{*} \\ + +% \midrule +% Stellite 300 +% & 44.5 & 22 & 32 & & 1.5 & & & & & & & & & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 694 +% & 45 & 28 & 19 & & 1 & 5 & & 1 & & & & & 1 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 703 +% & 44.6 & 32 & & 12 & 2.4 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 706 +% & 55.8 & 29 & & 5 & 1.2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 712 +% & 51.5 & 29 & & 8.5 & 2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +% \midrule +% Stellite 720 +% & 37.2 & 33 & & 18 & 2.5 & 3 & 3 & 1.5 & & & 0.3 & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ + +\end{longtable} +\begin{TableNotes} + \item[a] Hot Isostatic Pressing + \item[b] Inductively coupled plasma atomic emission spectroscopy + \item[c] Shielded metal arc welding + \item[d] Gas tungsten Arc Welding + \item[e] Plasma transfered Arc Welding +\end{TableNotes} +\end{ThreePartTable} +\end{landscape} +\end{LATEX} + + The remarkable ability of Stellite alloys to withstand these specific challenges stems from key metallurgical features. Their corrosion resistance is primarily attributed to a high chromium content, typically 20-30 wt.\%, which promotes the formation of a highly stable, tenacious, and self-healing chromium-rich passive oxide film on the material's surface; this film acts as a barrier isolating the underlying alloy from the corrosive environment. Alloying elements such as molybdenum and tungsten can further enhance this passivity, particularly improving resistance to localized corrosion phenomena like pitting and crevice corrosion in aggressive media. Concurrently, their outstanding cavitation resistance is largely derived from the unique behavior of the cobalt-rich matrix, which can undergo a stress-induced crystallographic transformation from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. This transformation, often facilitated by mechanical twinning, effectively absorbs the intense, localized impact energy from collapsing cavitation bubbles and leads to significant work hardening, thereby impeding material detachment and erosion. - - -Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, and 0.1-3.3 wt C, with a microstructure consisting of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., \(M_{7}C_{3}\), \(M_{23}C_{6}\)), and W/Mo (e.g. \(MC\), \(M_{6}C\) ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. -\section{Table: Show the table of stellite compositions} -\label{sec:org128a963} -\section{Table: Show the table of stellite compositions} -\label{sec:org513cc9c} - -\begin{LaTeX} -\begin{landscape} -\begin{table} -\caption{Stellite Compositions} -\label{tab:stellite_composition} -\begin{threeparttable} -\begin{tabular}{lllllllllllllllll} - & - \multicolumn{2}{c}{Base} & - \multicolumn{2}{c}{Refractory} & - Carbon & - \multicolumn{8}{c}{Others} & - & - & - \\ -Alloy & - \multicolumn{1}{c}{\textbf{Co}} & - \multicolumn{1}{c}{\textbf{Cr}} & - \multicolumn{1}{c}{\textbf{W}} & - \multicolumn{1}{c}{\textbf{Mo}} & - \multicolumn{1}{c}{\textbf{C}} & - \multicolumn{1}{c}{\textbf{Fe}} & - \multicolumn{1}{c}{\textbf{Ni}} & - \multicolumn{1}{c}{\textbf{Si}} & - \multicolumn{1}{c}{\textbf{P}} & - \multicolumn{1}{c}{\textbf{S}} & - \multicolumn{1}{c}{\textbf{B}} & - \multicolumn{1}{c}{\textbf{Ln}} & - \multicolumn{1}{c}{\textbf{Mn}} & - \multicolumn{1}{c}{\textbf{Ref}} & - \multicolumn{1}{c}{\textbf{Process Type}} & - \multicolumn{1}{c}{\textbf{Observation}} \\ - -\hline -\multirow{4}{*}{Stellite 1} -& 41.1 & 30.5 & 12.5 & & 2.4 & <5 & <3.5 & <2 & & & <1 & & <2 & \cite{davis2000nickel} & & \\ -& 47.7 & 30 & 13 & 0.5 & 2.5 & 3 & 1.5 & 1.3 & & & & & 0.5 & \cite{davis2000nickel} & & \\ -& 48.6 & 33 & 12.5 & 0 & 2.5 & 1 & 1 & 1.3 & & & & & 0.1 & \cite{alimardaniEffectLocalizedDynamic2010} & & \\ -& 46.84 & 31.7 & 12.7 & 0.29 & 2.47 & 2.3 & 2.38 & 1.06 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ - -\hline -\multirow{2}{*}{Stellite 3} -& 50.5 & 33 & 14 & & 2.5 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ -& 49.24 & 29.57 & 12.07 & 0.67 & 2.52 & 2.32 & 1.07 & 1.79 & & & & & 0.75 & \cite{ratiaComparisonSlidingWear2019} & HIPed & ICP-OES and combustion infrared detection for C \\ - -\hline -\multirow{5}{*}{Stellite 4} -& 45.43 & 30 & 14 & 1 & 0.57 & 3 & 3 & 2 & & & & & 1 & \cite{davis2000nickel} & & \\ -& 51.5 & 30 & 14 & & 1 & 1 & 2 & 0.5 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ -& 51.9 & 33 & 14 & & 1.1 & & & & & & & & & \cite{bunchCorrosionGallingResistant1989} & & \\ -& 49.41 & 31 & 14 & 0.12 & 0.67 & 2.16 & 1.82 & 1.04 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ -& 50.2 & 29.8 & 14.4 & 0 & 0.7 & 1.9 & 1.9 & 0.8 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -\hline -\multirow{10}{*}{Stellite 6} -& 51.5 & 28.5 & 4.5 & 1.5 & 1 & 5 & 3 & 2 & & & 1 & & 2 & \cite{davis2000nickel} & & \\ -& 63.81 & 27.08 & 5.01 & & 0.96 & 0.73 & 0.87 & 1.47 & & & & & 0.07 & \cite{ratiaComparisonSlidingWear2019} & HIPed & ICP-OES and combustion infrared detection for C \\ -& 60.3 & 29 & 4.5 & & 1.2 & 2 & 2 & 1 & & & & & & \cite{zhangFrictionWearCharacterization2002} & & \\ -& 61.7 & 27.5 & 4.5 & 0.5 & 1.15 & 1.5 & 1.5 & 1.15 & & & & & 0.5 & \cite{bunchCorrosionGallingResistant1989} & & \\ -& 58.46 & 29.5 & 4.6 & 0.22 & 1.09 & 2.09 & 2.45 & 1.32 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ -& 58.04 & 30.59 & 4.72 & & 1.24 & 2.03 & 1.87 & 0.80 & 0.01 & 0.01 & & & & \cite{ferozhkhanMetallurgicalStudyStellite2017} & PTAW & OES \\ -& 55.95 & 27.85 & 3.29 & & 0.87 & 6.24 & 3.63 & 1.23 & 0.01 & 0.01 & & & 0.45 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & GTAW & OES \\ -& 52.40 & 30.37 & 3.57 & & 0.96 & 6.46 & 3.93 & 1.70 & 0.01 & 0.01 & & & 0.3 & \cite{ferozhkhanMetallurgicalStudyStellite2017} & SMAW & OES \\ -& 60.3 & & 31.10 & 4.70 & 0.30 & 1.10 & 1.70 & 1.50 & 1.30 & & 0.00 & & 0.3 & \cite{pacquentinTemperatureInfluenceRepair2025} & LP-DED & ICP-AES \& GDMS \\ -& 60.6 & 27.7 & 5 & 0 & 1.2 & 1.9 & 2 & 1.3 & & & & & 0.3 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -\hline -Stellite 7 -& 64 & 25.9 & 4.9 & 0 & 0.5 & 1.5 & 1.1 & 1.1 & & & & & 1 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -\hline -\multirow{2}{*}{Stellite 12} -& 53.6 & 30 & 8.3 & & 1.4 & 3 & 1.5 & 0.7 & & & & & 1.5 & \cite{davis2000nickel} & & \\ -& 55.22 & 29.65 & 8.15 & 0.2 & 1.49 & 2.07 & 2.04 & 0.91 & & & & & 0.27 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ - -Stellite 19 -& 50.94 & 31.42 & 10.08 & 0.79 & 2.36 & 1.82 & 2 & 0.4 & & & 0.09 & & 0.1 & \cite{desaiEffectCarbideSize1984} & & \\ - -\multirow{2}{*}{Stellite 20} -& 41.05 & 33 & 17.5 & & 2.45 & 2.5 & 2.5 & & & & & & 1 & \cite{davis2000nickel} & & \\ -& 43.19 & 31.85 & 16.3 & 0.27 & 2.35 & 2.5 & 2.28 & 1 & & & & & 0.26 & \cite{ahmedMappingMechanicalProperties2023} & HIPed & ICP-OES \\ - - -\multirow{2}{*}{Stellite 21} -& 59.493 & 27 & & 5.5 & 0.25 & 3 & 2.75 & 1 & & & 0.007 & & 1 & \cite{davis2000nickel} & & \\ -& 60.6 & 26.9 & 0 & 5.7 & 0.2 & 1.3 & 2.7 & 1.9 & & & & & 0.7 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -Stellite 22 -& 54 & 27 & & 11 & 0.25 & 3 & 2.75 & 1 & & & & & 1 & \cite{davis2000nickel} & & \\ - -Stellite 23 -& 65.5 & 24 & 5 & & 0.4 & 1 & 2 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & & \\ - -Stellite 25 -& 49.4 & 20 & 15 & & 0.1 & 3 & 10 & 1 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 27 -& 35 & 25 & & 5.5 & 0.4 & 1 & 32 & 0.6 & & & & & 0.3 & \cite{davis2000nickel} & & \\ - -Stellite 30 -& 50.5 & 26 & & 6 & 0.45 & 1 & 15 & 0.6 & & & & & 0.6 & \cite{davis2000nickel} & & \\ - -\multirow{2}{*}{Stellite 31} -& 57.5 & 22 & 7.5 & & 0.5 & 1.5 & 10 & 0.5 & & & & & 0.5 & \cite{davis2000nickel} & & \\ -& 52.9 & 25.3 & 7.8 & 0 & 0.5 & 1.1 & 11.4 & 0.6 & & & & & 0.4 & \cite{ashworthMicrostructurePropertyRelationships1999} & HIPed & \\ - -Stellite 80 -& 44.6 & 33.5 & 19 & & 1.9 & & & & & & 1 & & & \cite{davis2000nickel} & & \\ - -Stellite 188 -& 37.27 & 22 & 14 & & 0.1 & 3 & 22 & 0.35 & & & & 0.03 & 1.25 & \cite{davis2000nickel} & & \\ - -\multirow{2}{*}{Stellite 190} -& 46.7 & 27 & 14 & 1 & 3.3 & 3 & 3 & 1 & & & & & 1 & \cite{davis2000nickel} & & \\ -& 48.72 & 27.25 & 14.4 & 0.2 & 3.21 & 2.1 & 2.81 & 1 & & & & & 0.31 & \cite{ahmedMappingMechanicalProperties2023} & HIPed\tnote{a} & ICP-OES\tnote{*} \\ - -Stellite 300 -& 44.5 & 22 & 32 & & 1.5 & & & & & & & & & \cite{davis2000nickel} & & \\ - -Stellite 694 -& 45 & 28 & 19 & & 1 & 5 & & 1 & & & & & 1 & \cite{davis2000nickel} & & \\ - -Stellite 703 -& 44.6 & 32 & & 12 & 2.4 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 706 -& 55.8 & 29 & & 5 & 1.2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 712 -& 51.5 & 29 & & 8.5 & 2 & 3 & 3 & 1.5 & & & & & 1.5 & \cite{davis2000nickel} & & \\ - -Stellite 720 -& 37.2 & 33 & & 18 & 2.5 & 3 & 3 & 1.5 & & & 0.3 & & 1.5 & \cite{davis2000nickel} & & \\ - -\end{tabular} -\begin{tablenotes} -\item[*] The footnote text. -\item[a] Another footnote. -\end{tablenotes} -\end{threeparttable} -\end{table} -\end{landscape} -\end{LaTeX} \section{Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation\hfill{}\textsc{ignore}} -\label{sec:org567a79b} - - +\label{sec:org3496e89} \section{Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance\hfill{}\textsc{ignore}} -\label{sec:org17e97e5} - - +\label{sec:org95f97c6} \section{Paragraph 6: Influence of HIPing\hfill{}\textsc{ignore}} -\label{sec:org5332b96} +\label{sec:org7bb1376} Compared with the case alloys, the HIPed alloys had relatively finer, rounded, and distributed carbides. \section{General Background} -\label{sec:org7bfce2d} -\%\% have a mini table of content at the start of the chapter -\{ -\hypersetup{linkcolor=black} -\minitoc -\} - +\label{sec:orgcf64eda} \%cite:@Franc2004265, @Romo201216, @Kumar2024, @Kim200685, @Gao2024, @20221xix, @Usta2023, @Cheng2023, @Zheng2022 Cavitation erosion presents a significant challenge in materials degradation in various industrial sectors, including hydroelectric power, marine propulsion, and nuclear systems, stemming from a complex interaction between fluid dynamics and material response \cite{francCavitationErosion2005, romoCavitationHighvelocitySlurry2012}. Hydrodynamically, the phenomenon initiates with the formation and subsequent violent collapse of vapor bubbles within a liquid, triggered by local pressures dropping to the saturated vapor pressure. These implosions generate intense, localized shockwaves and high-speed microjets that repeatedly impact adjacent solid surfaces \cite{gevariDirectIndirectThermal2020}. From a materials perspective, these impacts induce high stresses (100-1000 MPa) and high strain rates, surpassing material thresholds and leading to damage accumulation via plastic deformation, work hardening, fatigue crack initiation and propagation, and eventual material detachment. Mitigating this requires materials capable of effectively absorbing or resisting this dynamic loading, often under demanding conditions that may also include corrosion. @@ -294,12 +491,12 @@ Stellite 1 is a high-carbon and high-tungsten alloy, making it suitable for dema \section{Literature Survey} \section{Cavitation Tests} \chapter{Analytical Investigations} -\label{sec:org23cd51a} +\label{sec:orgbc9a8d0} \chapter{Experimental Investigations} -\label{sec:orgcbd56dc} +\label{sec:orgd1434a3} \section{Materials and Microstructure} -\label{sec:org409eb92} +\label{sec:org51ee073} The HIPed alloy was produced via canning the gas-atomized powders at 1200C and 100 MPa pressure for 4h, while the cast alloys were produced via sand casting. \% Sieve analysis and description of powders @@ -313,7 +510,7 @@ Image analysis was also conducted to ascertain the volume fractions of individua The Vickers microhardness was measured using a Wilson hardness tester under loads of BLAH. Thirty measurements under each load were conducted on each sample. \chapter{Discussion} -\label{sec:orgc69eb40} +\label{sec:org03afda8} \section{Experimental Test Procedure}