From 652db7072e33a9d113dd1ce1ce22e456caff0579 Mon Sep 17 00:00:00 2001 From: Vishakh Kumar Date: Wed, 14 May 2025 21:03:45 +0400 Subject: [PATCH] Thesis text --- .gitattributes | 2 + .ipynb_checkpoints/Untitled-checkpoint.ipynb | 9 +- Thesis.bbl | 1510 +----------------- Thesis.lof | 10 + Thesis.lot | 10 + Thesis.mtc1 | 21 +- Thesis.mtc2 | 2 + Thesis.mtc3 | 2 +- Thesis.mtc4 | 10 +- Thesis.mtc5 | 0 Thesis.org | 406 ++++- Thesis.pdf | 4 +- Thesis.tex | 266 ++- Untitled.ipynb | 4 +- references.bib | 4 +- thesis_original.org | 63 - 16 files changed, 605 insertions(+), 1718 deletions(-) create mode 100644 Thesis.lof create mode 100644 Thesis.lot create mode 100644 Thesis.mtc5 diff --git a/.gitattributes b/.gitattributes index 1b9ff51..61fdbcf 100644 --- a/.gitattributes +++ b/.gitattributes @@ -372,5 +372,7 @@ /Electrochemical/Cast_Stellite1_Sample2_Actual/OCP.cor filter=lfs diff=lfs merge=lfs -text /Electrochemical/Cast_Stellite1_Sample3_Actual/OCP.cor filter=lfs diff=lfs merge=lfs -text /Thesis.pdf filter=lfs diff=lfs merge=lfs -text +/.ipynb_checkpoints/Untitled-checkpoint.ipynb filter=lfs diff=lfs merge=lfs -text +/Thesis.bbl filter=lfs diff=lfs merge=lfs -text *.jp*g filter=lfs diff=lfs merge=lfs -text *.tif filter=lfs diff=lfs merge=lfs -text diff --git a/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/.ipynb_checkpoints/Untitled-checkpoint.ipynb index 363fcab..970590d 100644 --- a/.ipynb_checkpoints/Untitled-checkpoint.ipynb +++ b/.ipynb_checkpoints/Untitled-checkpoint.ipynb @@ -1,6 +1,3 @@ -{ - "cells": [], - "metadata": {}, - "nbformat": 4, - "nbformat_minor": 5 -} +version https://git-lfs.github.com/spec/v1 +oid sha256:4b47f5f379d722a0341bfcfa7ca2e1d9045f5bab225443a5c42505bef3fe280a +size 144241 diff --git a/Thesis.bbl b/Thesis.bbl index 64b4eee..ca1757f 100644 --- a/Thesis.bbl +++ b/Thesis.bbl @@ -1,1507 +1,3 @@ -% $ biblatex auxiliary file $ -% $ biblatex bbl format version 3.3 $ -% Do not modify the above lines! -% -% This is an auxiliary file used by the 'biblatex' package. -% This file may safely be deleted. It will be recreated by -% biber as required. -% -\begingroup -\makeatletter -\@ifundefined{ver@biblatex.sty} - {\@latex@error - {Missing 'biblatex' package} - {The bibliography requires the 'biblatex' package.} - \aftergroup\endinput} - {} -\endgroup - - -\refsection{0} - \datalist[entry]{nty/global//global/global/global} - \entry{ahmedMappingMechanicalProperties2023}{article}{}{} - \name{author}{3}{}{% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=8da5f61983121a25e044ca92bd036b2a}{% - family={Fardan}, - familyi={F\bibinitperiod}, - given={A.}, - giveni={A\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{fullhash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{fullhashraw}{b3a15b2b31620e3640b3b3a16271687c} - \strng{bibnamehash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{authorbibnamehash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{authornamehash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{authorfullhash}{b3a15b2b31620e3640b3b3a16271687c} - \strng{authorfullhashraw}{b3a15b2b31620e3640b3b3a16271687c} - \field{sortinit}{A} - \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{Stellite alloys have good wear resistance and maintain their strength up to 600°C, making them suitable for various industrial applications like cutting tools and combustion engine parts. This investigation was aimed at i) manufacturing new Stellite alloy blends using powder metallurgy and ii) mathematically mapping hardness, yield strength, ductility and impact energy of base and alloy blends. Linear, exponential, polynomial approximations and dimensional analyses were conducted in this semi-empirical mathematical modelling approach. Base alloy compositions similar to Stellite 1, 4, 6, 12, 20 and 190 were used in this investigation to form new alloys via blends. The microstructure was analysed using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Mechanical performance of alloys was conducted using tensile, hardness and Charpy impact tests. MATLAB® coding was used for the development of property maps. This investigation indicates that hardness and yield strength can be linked to the wt.\% composition of carbon and tungsten using linear approximation with a maximum variance of 5\% and 20\%, respectively. Elongation and carbide fraction showed a non-linear relationship with alloy composition. Impact energy was linked with elongation through polynomial approximation. A dimensional analysis was developed by interlinking carbide fraction, hardness, yield strength, and elongation to impact energy.} - \field{issn}{2374-068X} - \field{journaltitle}{Advances in Materials and Processing Technologies} - \field{month}{6} - \field{note}{1 citations (Semantic Scholar/DOI) [2025-04-12] Publisher: Taylor \& Francis \_eprint: https://doi.org/10.1080/2374068X.2023.2220242} - \field{number}{0} - \field{title}{Mapping the mechanical properties of cobalt-based stellite alloys manufactured via blending} - \field{urlday}{13} - \field{urlmonth}{7} - \field{urlyear}{2024} - \field{volume}{0} - \field{year}{2023} - \field{urldateera}{ce} - \field{pages}{1\bibrangedash 30} - \range{pages}{30} - \verb{doi} - \verb 10.1080/2374068X.2023.2220242 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1080/2374068X.2023.2220242 - \endverb - \verb{url} - \verb https://doi.org/10.1080/2374068X.2023.2220242 - \endverb - \keyw{Blending,Hiping,Mathematical model,Powder metallurgy,Stellite alloys,Structure-property relationships} - \endentry - \entry{ahmedSlidingWearBlended2021a}{article}{}{} - \name{author}{3}{}{% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=75bf7913ab7463c6e3734bec975046fc}{% - family={Villiers\bibnamedelima Lovelock}, - familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, - given={H.\bibnamedelimi L.}, - giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, - prefix={de}, - prefixi={d\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{652318761812c14e2605b641664892df} - \strng{fullhash}{652318761812c14e2605b641664892df} - \strng{fullhashraw}{652318761812c14e2605b641664892df} - \strng{bibnamehash}{652318761812c14e2605b641664892df} - \strng{authorbibnamehash}{652318761812c14e2605b641664892df} - \strng{authornamehash}{652318761812c14e2605b641664892df} - \strng{authorfullhash}{652318761812c14e2605b641664892df} - \strng{authorfullhashraw}{652318761812c14e2605b641664892df} - \field{sortinit}{A} - \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{This investigation reports on the tribomechanical evaluations of a Co-based alloy obtained by the hot isostatic pressing (HIPing) of a blend of two standard gas atomized cobalt alloy powders. A HIPed blend of Stellite 6 and Stellite 20 was used to investigate the effect of varying the C, Cr, and W content simultaneously on the structure-property relationships. Microstructural evaluations involved scanning electron microscopy and x-ray diffraction. Experimental evaluations were conducted using hardness, impact, tensile, abrasive wear and sliding wear tests to develop an understanding of the mechanical and tribological performance of the alloys. Results are discussed in terms of the failure modes for the mechanical tests, and wear mechanisms for the tribological tests. This study indicates that powder blends can be used to design for a desired combination of mechanical strength and wear properties in these HIPed alloys. Specific relationships were observed between the alloy composition and carbide content, hardness, impact energy and wear resistance. There was a linear relationship between the weighted W- and C-content and the carbide fraction. The abrasive wear performance also showed a linear relationship with the weighted alloy composition. The pin-on-disc and ball-on-flat experiments revealed a more complex relationship between the alloy composition and the wear rate.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{2} - \field{note}{18 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{title}{Sliding wear of blended cobalt based alloys} - \field{urlday}{13} - \field{urlmonth}{7} - \field{urlyear}{2024} - \field{volume}{466-467} - \field{year}{2021} - \field{urldateera}{ce} - \field{pages}{203533} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.wear.2020.203533 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0043164820309923 - \endverb - \keyw{Blending,HIPing,Hardness,Powder metallurgy,Sliding wear,Stellite alloy} - \endentry - \entry{ahmedInfluenceReHIPingStructure2013}{article}{}{} - \name{author}{4}{}{% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=75bf7913ab7463c6e3734bec975046fc}{% - family={Villiers\bibnamedelima Lovelock}, - familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, - given={H.\bibnamedelimi L.}, - giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, - prefix={de}, - prefixi={d\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - {{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{% - family={Faisal}, - familyi={F\bibinitperiod}, - given={N.\bibnamedelimi H.}, - giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}% - } - \strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{fullhash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{fullhashraw}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{bibnamehash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{authorbibnamehash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{authorfullhash}{e70fdd408b4a5e9730bd0722565b8e34} - \strng{authorfullhashraw}{e70fdd408b4a5e9730bd0722565b8e34} - \field{extraname}{1} - \field{sortinit}{A} - \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{HIP-consolidation (Hot Isostatic Pressing or HIPing) of cobalt-based Stellite alloys offers significant technological advantages for components operating in aggressive wear environments. The aim of this investigation was to ascertain the effect of re-HIPing on the HIPed alloy properties for Stellite 4, 6 and 20 alloys. Structure–property relationships are discussed on the basis of microstructural and tribo-mechanical evaluations. Re-HIPing results in coarsening of carbides and solid solution strengthening of the matrix. The average indentation modulus improved, as did the average hardness at micro- and nano-scales. Re-HIPing showed improvement in wear properties the extent of which was dependent on alloy composition.} - \field{issn}{0301-679X} - \field{journaltitle}{Tribology International} - \field{month}{1} - \field{note}{38 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{title}{Influence of {Re}-{HIPing} on the structure–property relationships of cobalt-based alloys} - \field{urlday}{30} - \field{urlmonth}{6} - \field{urlyear}{2024} - \field{volume}{57} - \field{year}{2013} - \field{urldateera}{ce} - \field{pages}{8\bibrangedash 21} - \range{pages}{14} - \verb{doi} - \verb 10.1016/j.triboint.2012.06.025 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0301679X12002241 - \endverb - \keyw{Abrasive wear,Cobalt based alloys,HIPing and Re-HIPing,Stellite 4,6,20,alloys} - \endentry - \entry{ahmedStructurePropertyRelationships2014}{article}{}{} - \name{author}{4}{}{% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=75bf7913ab7463c6e3734bec975046fc}{% - family={Villiers\bibnamedelima Lovelock}, - familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, - given={H.\bibnamedelimi L.}, - giveni={H\bibinitperiod\bibinitdelim L\bibinitperiod}, - prefix={de}, - prefixi={d\bibinitperiod}}}% - {{hash=1c8f35a67217a8f6cbd1f8d3edb797b0}{% - family={Faisal}, - familyi={F\bibinitperiod}, - given={N.\bibnamedelimi H.}, - giveni={N\bibinitperiod\bibinitdelim H\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{fullhash}{0ba22f8fbb626d88357e4651c3f66f4d} - \strng{fullhashraw}{0ba22f8fbb626d88357e4651c3f66f4d} - \strng{bibnamehash}{0ba22f8fbb626d88357e4651c3f66f4d} - \strng{authorbibnamehash}{0ba22f8fbb626d88357e4651c3f66f4d} - \strng{authornamehash}{82fc6b0dd69b51d07006a5e8127c7a8f} - \strng{authorfullhash}{0ba22f8fbb626d88357e4651c3f66f4d} - \strng{authorfullhashraw}{0ba22f8fbb626d88357e4651c3f66f4d} - \field{extraname}{2} - \field{sortinit}{A} - \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{This investigation considered the multiscale tribo-mechanical evaluations of CoCrMo (Stellite®21) alloys manufactured via two different processing routes of casting and HIP-consolidation from powder (Hot Isostatic Pressing). These involved hardness, nanoscratch, impact toughness, abrasive wear and sliding wear evaluations using pin-on-disc and ball-on-flat tests. HIPing improved the nanoscratch and ball-on-flat sliding wear performance due to higher hardness and work-hardening rate of the metal matrix. The cast alloy however exhibited superior abrasive wear and self-mated pin-on-disc wear performance. The tribological properties were more strongly influenced by the CoCr matrix, which is demonstrated in nanoscratch analysis.} - \field{issn}{0301-679X} - \field{journaltitle}{Tribology International} - \field{month}{12} - \field{note}{24 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{title}{Structure–property relationships in a {CoCrMo} alloy at micro and nano-scales} - \field{urlday}{30} - \field{urlmonth}{6} - \field{urlyear}{2024} - \field{volume}{80} - \field{year}{2014} - \field{urldateera}{ce} - \field{pages}{98\bibrangedash 114} - \range{pages}{17} - \verb{doi} - \verb 10.1016/j.triboint.2014.06.015 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0301679X14002436 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0301679X14002436 - \endverb - \keyw{Manufacturing,Nanoscratch,Nanotribology,Wear} - \endentry - \entry{alimardaniEffectLocalizedDynamic2010}{article}{}{} - \name{author}{4}{}{% - {{hash=b1d020be51ce7b141b4cf03868da762c}{% - family={Alimardani}, - familyi={A\bibinitperiod}, - given={Masoud}, - giveni={M\bibinitperiod}}}% - {{hash=44e10f283ada211ed0a7aa6d9913d23f}{% - family={Fallah}, - familyi={F\bibinitperiod}, - given={Vahid}, - giveni={V\bibinitperiod}}}% - {{hash=5aaf85cb279ac1471a04ce9c932a1122}{% - family={Khajepour}, - familyi={K\bibinitperiod}, - given={Amir}, - giveni={A\bibinitperiod}}}% - {{hash=88451951b0b3c1cc4383d3cebfc151ac}{% - family={Toyserkani}, - familyi={T\bibinitperiod}, - given={Ehsan}, - giveni={E\bibinitperiod}}}% - } - \strng{namehash}{86846ed827567cfd839f7c014178ad64} - \strng{fullhash}{6d9fe21dc14c2e93f67f0a8f73f5082f} - \strng{fullhashraw}{6d9fe21dc14c2e93f67f0a8f73f5082f} - \strng{bibnamehash}{6d9fe21dc14c2e93f67f0a8f73f5082f} - \strng{authorbibnamehash}{6d9fe21dc14c2e93f67f0a8f73f5082f} - \strng{authornamehash}{86846ed827567cfd839f7c014178ad64} - \strng{authorfullhash}{6d9fe21dc14c2e93f67f0a8f73f5082f} - \strng{authorfullhashraw}{6d9fe21dc14c2e93f67f0a8f73f5082f} - \field{sortinit}{A} - \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{In laser cladding, high cooling rates create outcomes with superior mechanical and metallurgical properties. However, this characteristic along with the additive nature of the process significantly contributes to the formation of thermal stresses which are the main cause of any potential delamination and crack formation across the deposited layers. This drawback is more prominent for additive materials such as Stellite 1 which are by nature crack-sensitive during the hardfacing process. In this work, parallel to the experimental investigation, a numerical model is used to study the temperature distributions and thermal stresses throughout the deposition of Stellite 1 for hardfacing application. To manage the thermal stresses, the effect of preheating the substrate in a localized dynamic fashion is investigated. The numerical and experimental analyses are conducted by the deposition of Stellite 1 powder on the substrate of AISI-SAE 4340 alloy steel using a 1.1kW fiber laser. Experimental results confirm that by preheating the substrate a crack-free coating layer of Stellite 1 well-bonded to the substrate with a uniform dendritic structure, well-distributed throughout the deposited layer, can be obtained contrary to non-uniform structures formed in the coating of the non-preheated substrate with several cracks.} - \field{issn}{0257-8972} - \field{journaltitle}{Surface and Coatings Technology} - \field{month}{8} - \field{note}{64 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{23} - \field{title}{The effect of localized dynamic surface preheating in laser cladding of {Stellite} 1} - \field{urlday}{31} - \field{urlmonth}{3} - \field{urlyear}{2025} - \field{volume}{204} - \field{year}{2010} - \field{urldateera}{ce} - \field{pages}{3911\bibrangedash 3919} - \range{pages}{9} - \verb{doi} - \verb 10.1016/j.surfcoat.2010.05.009 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0257897210003701 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0257897210003701 - \endverb - \keyw{Crack formation,Hardfacing alloys,Laser cladding,Preheating process,Temperature and thermal stress fields} - \endentry - \entry{ashworthMicrostructurePropertyRelationships1999}{article}{}{} - \name{author}{3}{}{% - {{hash=a0a9668f5a93080c8425a8cf80e9d0d2}{% - family={Ashworth}, - familyi={A\bibinitperiod}, - given={M.A.}, - giveni={M\bibinitperiod}}}% - {{hash=27753a82b6390957cb920ec5052f0810}{% - family={Jacobs}, - familyi={J\bibinitperiod}, - given={M.H.}, - giveni={M\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \list{language}{1}{% - {EN}% - } - \strng{namehash}{68dce5901af799f73fc399cf947f81b9} - \strng{fullhash}{68dce5901af799f73fc399cf947f81b9} - \strng{fullhashraw}{68dce5901af799f73fc399cf947f81b9} - \strng{bibnamehash}{68dce5901af799f73fc399cf947f81b9} - \strng{authorbibnamehash}{68dce5901af799f73fc399cf947f81b9} - \strng{authornamehash}{68dce5901af799f73fc399cf947f81b9} - \strng{authorfullhash}{68dce5901af799f73fc399cf947f81b9} - \strng{authorfullhashraw}{68dce5901af799f73fc399cf947f81b9} - \field{sortinit}{A} - \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{In the present paper the microstructure and properties of a range of hipped Stellite powders are investigated, the basic aim of the study being to generate a materia/property database to facilitate alloy selection for potential applications involving net shape component manufacture. Particular attention is paid to the morphology, particle size distribution, and surface composition of the as atomised powders and their effect on subsequent consolidation. The consolidated powders are fully characterised in terms of microstructure and the composition and distribution of secondary phases. The effect of hipping temperature on the microstructure, hardness, and tensile properties of the powders are discussed in terms of the optimum processing temperature for the various alloys.} - \field{issn}{0032-5899} - \field{journaltitle}{Powder Metallurgy} - \field{month}{3} - \field{note}{23 citations (Semantic Scholar/DOI) [2025-04-12] Publisher: SAGE Publications} - \field{number}{3} - \field{title}{Microstructure and property relationships in hipped {Stellite} powders} - \field{urlday}{3} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{42} - \field{year}{1999} - \field{urldateera}{ce} - \field{pages}{243\bibrangedash 249} - \range{pages}{7} - \verb{doi} - \verb 10.1179/003258999665585 - \endverb - \verb{urlraw} - \verb https://journals.sagepub.com/action/showAbstract - \endverb - \verb{url} - \verb https://journals.sagepub.com/action/showAbstract - \endverb - \endentry - \entry{bunchCorrosionGallingResistant1989}{inproceedings}{}{} - \name{author}{3}{}{% - {{hash=ff8de9c468efb7eab8b92e573d3949ed}{% - family={Bunch}, - familyi={B\bibinitperiod}, - given={P.\bibnamedelimi O.}, - giveni={P\bibinitperiod\bibinitdelim O\bibinitperiod}}}% - {{hash=47f88033d1313a3ac56378baefb344e4}{% - family={Hartmann}, - familyi={H\bibinitperiod}, - given={M.\bibnamedelimi P.}, - giveni={M\bibinitperiod\bibinitdelim P\bibinitperiod}}}% - {{hash=7f4198582fc42b8ddab60cd433790594}{% - family={Bednarowicz}, - familyi={B\bibinitperiod}, - given={T.\bibnamedelimi A.}, - giveni={T\bibinitperiod\bibinitdelim A\bibinitperiod}}}% - } - \list{language}{1}{% - {en}% - } - \list{publisher}{1}{% - {OnePetro}% - } - \strng{namehash}{27ba512d074ac1ae4276e7a91ea23549} - \strng{fullhash}{27ba512d074ac1ae4276e7a91ea23549} - \strng{fullhashraw}{27ba512d074ac1ae4276e7a91ea23549} - \strng{bibnamehash}{27ba512d074ac1ae4276e7a91ea23549} - \strng{authorbibnamehash}{27ba512d074ac1ae4276e7a91ea23549} - \strng{authornamehash}{27ba512d074ac1ae4276e7a91ea23549} - \strng{authorfullhash}{27ba512d074ac1ae4276e7a91ea23549} - \strng{authorfullhashraw}{27ba512d074ac1ae4276e7a91ea23549} - \field{sortinit}{B} - \field{sortinithash}{d7095fff47cda75ca2589920aae98399} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{ABSTRACT. Application of corrosion resistant hardfacing materials are required to maintain exceptional reliability for metal to metal sealing in high pressure gate valves used for offshore production wells. New hardfacing materials have been developed and tailored for use where defense against degradation effects of high temperature, high pressure, H2S, C02, free sulfur and brine environments is required. Using a plasma transferred arc (PTA) weld process, new hardfacings of Stellite cobalt base materials have been successfully applied to nickel base alloy substrates. These hardfacings provide exceptional corrosion resistance over previously used materials produced by spray and fuse as well as high velocity combustion spray (} - \field{month}{5} - \field{note}{1 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{title}{Corrosion/{Galling} {Resistant} {Hardfacing} {Materials} for {Offshore} {Production} {Valves}} - \field{urlday}{1} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{year}{1989} - \field{urldateera}{ce} - \verb{doi} - \verb 10.4043/6070-MS - \endverb - \verb{urlraw} - \verb https://dx.doi.org/10.4043/6070-MS - \endverb - \verb{url} - \verb https://dx.doi.org/10.4043/6070-MS - \endverb - \endentry - \entry{crookCobaltbaseAlloysResist1994}{article}{}{} - \name{author}{1}{}{% - {{hash=16985215fbfc4124567154cd4ca61487}{% - family={Crook}, - familyi={C\bibinitperiod}, - given={P}, - giveni={P\bibinitperiod}}}% - } - \strng{namehash}{16985215fbfc4124567154cd4ca61487} - \strng{fullhash}{16985215fbfc4124567154cd4ca61487} - \strng{fullhashraw}{16985215fbfc4124567154cd4ca61487} - \strng{bibnamehash}{16985215fbfc4124567154cd4ca61487} - \strng{authorbibnamehash}{16985215fbfc4124567154cd4ca61487} - \strng{authornamehash}{16985215fbfc4124567154cd4ca61487} - \strng{authorfullhash}{16985215fbfc4124567154cd4ca61487} - \strng{authorfullhashraw}{16985215fbfc4124567154cd4ca61487} - \field{sortinit}{C} - \field{sortinithash}{4d103a86280481745c9c897c925753c0} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{issn}{0882-7958} - \field{journaltitle}{Cobalt-base alloys resist wear, corrosion, and heat} - \field{note}{Place: Materials Park, OH Publisher: ASM International} - \field{number}{4} - \field{title}{Cobalt-base alloys resist wear, corrosion, and heat} - \field{volume}{145} - \field{year}{1994} - \field{pages}{27\bibrangedash 30} - \range{pages}{4} - \endentry - \entry{davis2000nickel}{book}{}{} - \name{author}{2}{}{% - {{hash=d24975e937cc4c8eafeb981d8d16a1d4}{% - family={Davis}, - familyi={D\bibinitperiod}, - given={J.R.}, - giveni={J\bibinitperiod}}}% - {{hash=2e482fdb03378296689bc75a76c2bdc4}{% - family={Committee}, - familyi={C\bibinitperiod}, - given={A.S.M.I.H.}, - giveni={A\bibinitperiod}}}% - } - \list{publisher}{1}{% - {ASM International}% - } - \strng{namehash}{ded5e703628bfa51629c3e9340068998} - \strng{fullhash}{ded5e703628bfa51629c3e9340068998} - \strng{fullhashraw}{ded5e703628bfa51629c3e9340068998} - \strng{bibnamehash}{ded5e703628bfa51629c3e9340068998} - \strng{authorbibnamehash}{ded5e703628bfa51629c3e9340068998} - \strng{authornamehash}{ded5e703628bfa51629c3e9340068998} - \strng{authorfullhash}{ded5e703628bfa51629c3e9340068998} - \strng{authorfullhashraw}{ded5e703628bfa51629c3e9340068998} - \field{sortinit}{D} - \field{sortinithash}{6f385f66841fb5e82009dc833c761848} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{isbn}{978-0-87170-685-0} - \field{note}{tex.lccn: 00059348} - \field{series}{{ASM} specialty handbook} - \field{title}{Nickel, cobalt, and their alloys} - \field{year}{2000} - \verb{urlraw} - \verb https://books.google.ae/books?id=IePhmnbmRWkC - \endverb - \verb{url} - \verb https://books.google.ae/books?id=IePhmnbmRWkC - \endverb - \endentry - \entry{desaiEffectCarbideSize1984}{article}{}{} - \name{author}{4}{}{% - {{hash=fc05df304d9bc11398a5c124af37591d}{% - family={Desai}, - familyi={D\bibinitperiod}, - given={V.\bibnamedelimi M.}, - giveni={V\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=ec550afc1e3aea4900fb58655a64f6da}{% - family={Rao}, - familyi={R\bibinitperiod}, - given={C.\bibnamedelimi M.}, - giveni={C\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=33b6be2f67c7c521e0d9dd2e94cb03fa}{% - family={Kosel}, - familyi={K\bibinitperiod}, - given={T.\bibnamedelimi H.}, - giveni={T\bibinitperiod\bibinitdelim H\bibinitperiod}}}% - {{hash=1ad7f5a75d8dc26e538ca7e4d233e622}{% - family={Fiore}, - familyi={F\bibinitperiod}, - given={N.\bibnamedelimi F.}, - giveni={N\bibinitperiod\bibinitdelim F\bibinitperiod}}}% - } - \strng{namehash}{aeae2b334e415789011cf05b2beda57d} - \strng{fullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{fullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{bibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{authorbibnamehash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{authornamehash}{aeae2b334e415789011cf05b2beda57d} - \strng{authorfullhash}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \strng{authorfullhashraw}{3e12109fb3ad3bbc6eba6a83ee61b7de} - \field{sortinit}{D} - \field{sortinithash}{6f385f66841fb5e82009dc833c761848} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{A study of the effect of carbide size on the abrasion resistance of two cobalt-base powder metallurgy alloys, alloys 6 and 19, was conducted using low stress abrasion with a relatively hard abrasive, A12O3. Specimens of each alloy were produced with different carbide sizes but with a constant carbide volume fraction. The wear test results show a monotonie decrease in wear rate with increasing carbide size. Scanning electron microscopy of the worn surfaces and of wear debris particles shows that the primary material removal mechanism is micromachining. Small carbides provide little resistance to micromachining because of the fact that many of them are contained entirely in the volume of micromachining chips. The large carbides must be directly cut by the abrasive particles. Other less frequently observed material removal mechanisms included direct carbide pull-out and the formation of large pits in fine carbide specimens. These processes are considered secondary in the present work, but they may have greater importance in wear by relatively soft abrasives which do not cut chips from the carbide phase of these alloys. Some indication of this is provided by limited studies using a relatively soft abrasive, rounded quartz.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{2} - \field{note}{59 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{1} - \field{title}{Effect of carbide size on the abrasion of cobalt-base powder metallurgy alloys} - \field{urlday}{17} - \field{urlmonth}{11} - \field{urlyear}{2024} - \field{volume}{94} - \field{year}{1984} - \field{urldateera}{ce} - \field{pages}{89\bibrangedash 101} - \range{pages}{13} - \verb{doi} - \verb 10.1016/0043-1648(84)90168-6 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/0043164884901686 - \endverb - \keyw{Cavitation,Cavitation equipment,Damage measurement,Instrumentation,Sodium} - \endentry - \entry{ferozhkhanMetallurgicalStudyStellite2017}{article}{}{} - \name{author}{3}{}{% - {{hash=bed071d3745587c303d1b4411281a295}{% - family={Ferozhkhan}, - familyi={F\bibinitperiod}, - given={Mohammed\bibnamedelima Mohaideen}, - giveni={M\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=fdb6a42317e0e10a267ce7c918a63e11}{% - family={Kumar}, - familyi={K\bibinitperiod}, - given={Kottaimathan\bibnamedelima Ganesh}, - giveni={K\bibinitperiod\bibinitdelim G\bibinitperiod}}}% - {{hash=250edfbd96cbc7ebd974dd11a2098198}{% - family={Ravibharath}, - familyi={R\bibinitperiod}, - given={Rajanbabu}, - giveni={R\bibinitperiod}}}% - } - \list{language}{1}{% - {en}% - } - \strng{namehash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{fullhash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{fullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{bibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{authorbibnamehash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{authornamehash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{authorfullhash}{c63a5ee4b2edf1e71712795226de5b1a} - \strng{authorfullhashraw}{c63a5ee4b2edf1e71712795226de5b1a} - \field{sortinit}{F} - \field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{309-16L stainless steel was deposited over base metal Grade 91 steel (9Cr–1Mo) as buffer layer by shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and flux cored arc welding processes, and then, Stellite 6 (Co–Cr alloy) was coated on stainless steel buffer by SMAW, GTAW and plasma transferred arc welding processes. Stellite 6 coatings were characterized using optical microscope, Vickers hardness tester and optical emission spectrometer, respectively. The FCA deposit has less heat-affected zone and uniform hardness than SMA and GTA deposits. The buffer layer has reduced the formation of any surface cracks and delamination near the fusion zones. The microstructure of Stellite 6 consists of dendrites of Co solid solution and carbides secretion in the interdendrites of Co and Cr matrix. Electron-dispersive spectroscopy line scan has been conducted to analyse the impact of alloying elements in the fusion line and Stellite 6 deposits. It was observed that dilution of Fe in PTA-deposited Stellite 6 was lesser than SMA and GTA deposits and uniform hardness of 600–650 \$\${\textbackslash}hbox \{HV\}\_\{0.3\}\$\$was obtained from PTA deposit. The chemical analysis resulted in alloy composition of PTA deposit has nominal percentage in comparison with consumable composition while GTA and SMA deposits has high dilution of Fe and Ni.} - \field{issn}{2191-4281} - \field{journaltitle}{Arabian Journal for Science and Engineering} - \field{month}{5} - \field{note}{0 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{5} - \field{title}{Metallurgical {Study} of {Stellite} 6 {Cladding} on 309-{16L} {Stainless} {Steel}} - \field{urlday}{31} - \field{urlmonth}{3} - \field{urlyear}{2025} - \field{volume}{42} - \field{year}{2017} - \field{urldateera}{ce} - \field{pages}{2067\bibrangedash 2074} - \range{pages}{8} - \verb{doi} - \verb 10.1007/s13369-017-2457-7 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1007/s13369-017-2457-7 - \endverb - \verb{url} - \verb https://doi.org/10.1007/s13369-017-2457-7 - \endverb - \keyw{Dilution,EDS,Hardfacing,Interdendrites,Stellite} - \endentry - \entry{francCavitationErosion2005}{incollection}{}{} - \name{editor}{2}{}{% - {{hash=82466166f53e07ad9568dba9555563e7}{% - family={Franc}, - familyi={F\bibinitperiod}, - given={Jean-Pierre}, - giveni={J\bibinithyphendelim P\bibinitperiod}}}% - {{hash=441eced1863753c712f0eaa788cbc3d5}{% - family={Michel}, - familyi={M\bibinitperiod}, - given={Jean-Marie}, - giveni={J\bibinithyphendelim M\bibinitperiod}}}% - } - \list{language}{1}{% - {en}% - } - \list{location}{1}{% - {Dordrecht}% - } - \list{publisher}{1}{% - {Springer Netherlands}% - } - \strng{namehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{fullhash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{fullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{bibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editorbibnamehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editornamehash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editorfullhash}{9ef3cd89643a1a5e288c68eb93b9390c} - \strng{editorfullhashraw}{9ef3cd89643a1a5e288c68eb93b9390c} - \field{sortinit}{F} - \field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4} - \field{labelnamesource}{editor} - \field{labeltitlesource}{title} - \field{booktitle}{Fundamentals of {Cavitation}} - \field{isbn}{978-1-4020-2233-3} - \field{title}{Cavitation {Erosion}} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{year}{2005} - \field{urldateera}{ce} - \field{pages}{265\bibrangedash 291} - \range{pages}{27} - \verb{doi} - \verb 10.1007/1-4020-2233-6_12 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1007/1-4020-2233-6_12 - \endverb - \verb{url} - \verb https://doi.org/10.1007/1-4020-2233-6_12 - \endverb - \keyw{Acoustic Impedance,Adverse Pressure Gradient,Mass Loss Rate,Pressure Pulse,Solid Wall} - \endentry - \entry{gevariDirectIndirectThermal2020}{article}{}{} - \name{author}{5}{}{% - {{hash=93d9cff817608f96c206941face4c5d7}{% - family={Gevari}, - familyi={G\bibinitperiod}, - given={Moein\bibnamedelima Talebian}, - giveni={M\bibinitperiod\bibinitdelim T\bibinitperiod}}}% - {{hash=e271948379fd6fee4bd30a4d576761b8}{% - family={Abbasiasl}, - familyi={A\bibinitperiod}, - given={Taher}, - giveni={T\bibinitperiod}}}% - {{hash=67d0558f57dbf7548b5b43a80b85f47f}{% - family={Niazi}, - familyi={N\bibinitperiod}, - given={Soroush}, - giveni={S\bibinitperiod}}}% - {{hash=efb87c095e41c6349ba97d939982e130}{% - family={Ghorbani}, - familyi={G\bibinitperiod}, - given={Morteza}, - giveni={M\bibinitperiod}}}% - {{hash=311cf929c32c6c2ce5aa2728ae09ad47}{% - family={Koşar}, - familyi={K\bibinitperiod}, - given={Ali}, - giveni={A\bibinitperiod}}}% - } - \strng{namehash}{76843143b68c90c6ac5d9d854fd56c1f} - \strng{fullhash}{7e654139b427bf36f3a25a5848105f5b} - \strng{fullhashraw}{7e654139b427bf36f3a25a5848105f5b} - \strng{bibnamehash}{7e654139b427bf36f3a25a5848105f5b} - \strng{authorbibnamehash}{7e654139b427bf36f3a25a5848105f5b} - \strng{authornamehash}{76843143b68c90c6ac5d9d854fd56c1f} - \strng{authorfullhash}{7e654139b427bf36f3a25a5848105f5b} - \strng{authorfullhashraw}{7e654139b427bf36f3a25a5848105f5b} - \field{sortinit}{G} - \field{sortinithash}{32d67eca0634bf53703493fb1090a2e8} - \field{labelnamesource}{author} - \field{labeltitlesource}{shorttitle} - \field{abstract}{The phase change phenomenon in fluids as a result of low local pressure under a critical value is known as cavitation. Acoustic wave propagation or hydrodynamic pressure drop of the working fluid are the main reasons for inception of this phenomenon. Considering the released energy from the collapsing cavitation bubbles as a reliable source has led to its implementation to different fields, namely, heat transfer, surface cleaning and fouling, water treatment, food industry, chemical reactions, energy harvesting. A considerable amount of energy in the mentioned industries is required for thermal applications. Cavitation could serve for minimizing the energy demand and optimizing the processes. Thus, the energy efficiency of the systems could be significantly enhanced. This review article focuses on the direct and indirect thermal applications of hydrodynamic and acoustic cavitation. Relevant studies with emerging applications are discussed, while developments in cavitation, which have given rise to thermal applications during the last decade, are also included in this review.} - \field{issn}{1359-4311} - \field{journaltitle}{Applied Thermal Engineering} - \field{month}{5} - \field{note}{84 citations (Semantic Scholar/DOI) [2025-04-13]} - \field{shorttitle}{Direct and indirect thermal applications of hydrodynamic and acoustic cavitation} - \field{title}{Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: {A} review} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{171} - \field{year}{2020} - \field{urldateera}{ce} - \field{pages}{115065} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.applthermaleng.2020.115065 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S135943111937766X - \endverb - \keyw{Acoustic cavitation,Food industry,Heat transfer enhancement,Hydrodynamic cavitation,Water treatment} - \endentry - \entry{huangMicrostructureEvolutionMartensite2023}{article}{}{} - \name{author}{6}{}{% - {{hash=55328195d8b2c0f90f11e12f5ddb7d65}{% - family={Huang}, - familyi={H\bibinitperiod}, - given={Zonglian}, - giveni={Z\bibinitperiod}}}% - {{hash=2938deb5048323c6e1bfdd80975d5b28}{% - family={Wang}, - familyi={W\bibinitperiod}, - given={Bo}, - giveni={B\bibinitperiod}}}% - {{hash=0138deaf332692ced30d823b9cebc488}{% - family={Liu}, - familyi={L\bibinitperiod}, - given={Fei}, - giveni={F\bibinitperiod}}}% - {{hash=92c4cc87ddf9f0a5abb5ff8d5b8878d4}{% - family={Song}, - familyi={S\bibinitperiod}, - given={Min}, - giveni={M\bibinitperiod}}}% - {{hash=971be18e8809118d44c885580820c916}{% - family={Ni}, - familyi={N\bibinitperiod}, - given={Song}, - giveni={S\bibinitperiod}}}% - {{hash=eb96d2754cddae273dd482f087734e31}{% - family={Liu}, - familyi={L\bibinitperiod}, - given={Shaojun}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{61779e4ce456f415f5dc118db21bed83} - \strng{fullhash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{fullhashraw}{8ca9ebea09cf1f645c339306001d45ac} - \strng{bibnamehash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{authorbibnamehash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{authornamehash}{61779e4ce456f415f5dc118db21bed83} - \strng{authorfullhash}{8ca9ebea09cf1f645c339306001d45ac} - \strng{authorfullhashraw}{8ca9ebea09cf1f645c339306001d45ac} - \field{sortinit}{H} - \field{sortinithash}{23a3aa7c24e56cfa16945d55545109b5} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{The influence of laser energy density and heat treatment on the microstructure and properties of Co-Cr-Mo-W alloys fabricated by selective laser melting (SLM) are investigated symmetrically. When the laser power, the scanning speed, and the scanning space are set as 160 W, 400 mm/s, and 0.07 mm, respectively, the SLM-ed Co-Cr-Mo-W alloys display high strength and good ductility simultaneously. The precipitates ranging from nano- to macro- scale are finely distributed in SLM-ed CoCr alloys grains and/or along the grain boundaries in the heat treated alloys. Co-Cr-Mo-W alloys with an excellent combination of strength and ductility can be achieved by tailoring the microstructure and morphology of SLM-ed alloys during the heat treatment. The tensile strength, yield strength, and elongation are 1221.38 ± 10 MPa, 778.81 ± 12 MPa, and 17.2 ± 0.67\%, respectively.} - \field{issn}{0263-4368} - \field{journaltitle}{International Journal of Refractory Metals and Hard Materials} - \field{month}{6} - \field{title}{Microstructure evolution, martensite transformation and mechanical properties of heat treated {Co}-{Cr}-{Mo}-{W} alloys by selective laser melting} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{113} - \field{year}{2023} - \field{urldateera}{ce} - \field{pages}{106170} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.ijrmhm.2023.106170 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0263436823000707 - \endverb - \keyw{Co–Cr–Mo-W alloys,Heat treatment,Martensite phase transformation,Mechanical properties,Selective laser melting} - \endentry - \entry{malayogluComparingPerformanceHIPed2003}{article}{}{} - \name{author}{2}{}{% - {{hash=71f57eb10950396ed3fa62c703ddaee5}{% - family={Malayoglu}, - familyi={M\bibinitperiod}, - given={U.}, - giveni={U\bibinitperiod}}}% - {{hash=c00a172220606f67c3da2492047a9b71}{% - family={Neville}, - familyi={N\bibinitperiod}, - given={A.}, - giveni={A\bibinitperiod}}}% - } - \strng{namehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{fullhash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{fullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{bibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authorbibnamehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authornamehash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authorfullhash}{49054a18ed24a57daa4c3278c94c6ce5} - \strng{authorfullhashraw}{49054a18ed24a57daa4c3278c94c6ce5} - \field{sortinit}{M} - \field{sortinithash}{4625c616857f13d17ce56f7d4f97d451} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{In this paper, results from erosion–corrosion tests performed under liquid–solid erosion conditions in 3.5\% NaCl liquid medium are reported. The focus of the paper is to compare the behaviour of Cast and Hot Isostatically Pressed (HIPed) Stellite 6 alloy in terms of their electrochemical corrosion characteristics, their resistance to mechanical degradation and relationship between microstructure and degradation mechanisms. It has been shown that HIPed Stellite 6 possesses better erosion and erosion corrosion resistance than that of Cast Stellite 6 and two stainless steels (UNS S32760 and UNS S31603) under the same solid loading (200 and 500mg/l), and same temperature (20 and 50°C). The material removal mechanisms have been identified by using atomic force microscopy (AFM) and shown preferential removal of the Co-rich matrix to be less extensive on the HIPed material.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{8} - \field{note}{34 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{1} - \field{series}{14th {International} {Conference} on {Wear} of {Materials}} - \field{title}{Comparing the performance of {HIPed} and {Cast} {Stellite} 6 alloy in liquid–solid slurries} - \field{urlday}{17} - \field{urlmonth}{2} - \field{urlyear}{2025} - \field{volume}{255} - \field{year}{2003} - \field{urldateera}{ce} - \field{pages}{181\bibrangedash 194} - \range{pages}{14} - \verb{doi} - \verb 10.1016/S0043-1648(03)00287-4 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0043164803002874 - \endverb - \keyw{Cast Stellite 6,Corrosion,Erosion,HIPed,Liquid–solid slurries} - \endentry - \entry{pacquentinTemperatureInfluenceRepair2025}{article}{}{} - \name{author}{5}{}{% - {{hash=096b7ba62dd31bb3abb4c7daa2ba6477}{% - family={Pacquentin}, - familyi={P\bibinitperiod}, - given={Wilfried}, - giveni={W\bibinitperiod}}}% - {{hash=9e420ee86aa957c365d57085e999996c}{% - family={Wident}, - familyi={W\bibinitperiod}, - given={Pierre}, - giveni={P\bibinitperiod}}}% - {{hash=268ededdba463184d10a8f5532d5cf81}{% - family={Varlet}, - familyi={V\bibinitperiod}, - given={Jérôme}, - giveni={J\bibinitperiod}}}% - {{hash=b24f3669f2a577f8062abf9d04e0e179}{% - family={Cailloux}, - familyi={C\bibinitperiod}, - given={Thomas}, - giveni={T\bibinitperiod}}}% - {{hash=ba3f789128096170532622dc53c3bbd0}{% - family={Maskrot}, - familyi={M\bibinitperiod}, - given={Hicham}, - giveni={H\bibinitperiod}}}% - } - \strng{namehash}{f57606f1b71f32267dc7727ee385b008} - \strng{fullhash}{0cc41d1605707534d43f79ae97691cbc} - \strng{fullhashraw}{0cc41d1605707534d43f79ae97691cbc} - \strng{bibnamehash}{0cc41d1605707534d43f79ae97691cbc} - \strng{authorbibnamehash}{0cc41d1605707534d43f79ae97691cbc} - \strng{authornamehash}{f57606f1b71f32267dc7727ee385b008} - \strng{authorfullhash}{0cc41d1605707534d43f79ae97691cbc} - \strng{authorfullhashraw}{0cc41d1605707534d43f79ae97691cbc} - \field{sortinit}{P} - \field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{Additive manufacturing (AM) is a proven time- and cost-effective method for repairing parts locally damaged after e.g. repetitive friction wear or corrosion. Repairing a hardfacing coating using AM technologies presents however several simultaneous challenges arising from the complex geometry and a high probability of crack formation due to process-induced stress. We address the repair of a cobalt-based Stellite™ 6 hardfacing coating on an AISI 316L substrate performed using Laser Powder Directed Energy Deposition (LP-DED) and investigate the influence of key process features and parameters. We describe our process which successfully prevents crack formation both during and after the repair, highlighting the design of the preliminary part machining phase, induction heating of an extended part volume during the laser repair phase and the optimal scanning strategy. Local characterization using non-destructive testing, Vickers hardness measurements and microstructural examinations by scanning electron microscopy (SEM) show an excellent metallurgical quality of the repair and its interface with the original part. In addition, we introduce an innovative process qualification test assessing the repair quality and innocuity, which is based on the global response to induced cracks and probes the absence of crack attraction by the repair (ACAR11ACAR stands for absence of crack attraction by the repair.). Here this ACAR test reveals a slight difference in mechanical behavior between the repair and the original coating which motivates further work to eventually make the repair imperceptible.} - \field{issn}{2666-3309} - \field{journaltitle}{Journal of Advanced Joining Processes} - \field{month}{6} - \field{title}{Temperature influence on the repair of a hardfacing coating using laser metal deposition and assessment of the repair innocuity} - \field{urlday}{31} - \field{urlmonth}{3} - \field{urlyear}{2025} - \field{volume}{11} - \field{year}{2025} - \field{urldateera}{ce} - \field{pages}{100284} - \range{pages}{1} - \verb{doi} - \verb 10.1016/j.jajp.2025.100284 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S2666330925000056 - \endverb - \keyw{Additive manufacturing,Direct laser deposition,Hardfacing coating,Mechanical characterization,Repair,Repair innocuity assessment} - \endentry - \entry{ratiaComparisonSlidingWear2019}{article}{}{} - \name{author}{7}{}{% - {{hash=4d8d77bd60a2e1fd293e809631bc5a84}{% - family={Ratia}, - familyi={R\bibinitperiod}, - given={Vilma\bibnamedelima L.}, - giveni={V\bibinitperiod\bibinitdelim L\bibinitperiod}}}% - {{hash=84a91dba5410e2e8f67915c4c17aea08}{% - family={Zhang}, - familyi={Z\bibinitperiod}, - given={Deen}, - giveni={D\bibinitperiod}}}% - {{hash=f9e5a7fad20d40241ed0f25f05849207}{% - family={Carrington}, - familyi={C\bibinitperiod}, - given={Matthew\bibnamedelima J.}, - giveni={M\bibinitperiod\bibinitdelim J\bibinitperiod}}}% - {{hash=a61a195bd0ed9f39c9d446f02d7b9592}{% - family={Daure}, - familyi={D\bibinitperiod}, - given={Jaimie\bibnamedelima L.}, - giveni={J\bibinitperiod\bibinitdelim L\bibinitperiod}}}% - {{hash=d9e3c0caaa2d6903c488a2973cea1fd8}{% - family={McCartney}, - familyi={M\bibinitperiod}, - given={D.\bibnamedelimi Graham}, - giveni={D\bibinitperiod\bibinitdelim G\bibinitperiod}}}% - {{hash=d69de7eb40c8f8c0c78825838cd1f8ee}{% - family={Shipway}, - familyi={S\bibinitperiod}, - given={Philip\bibnamedelima H.}, - giveni={P\bibinitperiod\bibinitdelim H\bibinitperiod}}}% - {{hash=b150a22a65dc3516b89a2bd86a0e25ff}{% - family={Stewart}, - familyi={S\bibinitperiod}, - given={David\bibnamedelima A.}, - giveni={D\bibinitperiod\bibinitdelim A\bibinitperiod}}}% - } - \strng{namehash}{0f5fdf8e51bf5515e4025351773003d8} - \strng{fullhash}{2e0376be46be3b8d245d5ab5620f4ca2} - \strng{fullhashraw}{2e0376be46be3b8d245d5ab5620f4ca2} - \strng{bibnamehash}{2e0376be46be3b8d245d5ab5620f4ca2} - \strng{authorbibnamehash}{2e0376be46be3b8d245d5ab5620f4ca2} - \strng{authornamehash}{0f5fdf8e51bf5515e4025351773003d8} - \strng{authorfullhash}{2e0376be46be3b8d245d5ab5620f4ca2} - \strng{authorfullhashraw}{2e0376be46be3b8d245d5ab5620f4ca2} - \field{sortinit}{R} - \field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{Cobalt-based alloys such as Stellite 3 and Stellite 6 are widely used to protect stainless steel surfaces in primary circuit nuclear reactor applications where high resistance to wear and corrosion are required. In this study, self-mated sliding wear of Stellite 3 and Stellite 6 consolidated by hot isostatic pressing were compared. Tests were performed with a pin-on-disc apparatus enclosed in a water-submerged autoclave environment and wear was measured from room temperature up to 250 °C (a representative pressurized water reactor environment). Both alloys exhibit a microstructure of micron-sized carbides embedded in a cobalt-rich matrix. Stellite 3 (higher tungsten and carbon content) contains M7C3 and an eta (η) -carbide whereas Stellite 6 contains only M7C3. Furthermore, the former has a significantly higher carbide volume fraction and hardness than the latter. Both alloys show a significant increase in the wear rate as the temperature is increased but Stellite 3 has a higher wear resistance over the entire range; at 250 °C the wear rate of Stellite 6 is more than five times that of Stellite 3. There is only a minimal formation of a transfer layer on the sliding surfaces but electron backscatter diffraction on cross-sections through the wear scar revealed that wear causes partial transformation of the cobalt matrix from fcc to hcp in both alloys over the entire temperature range. It is proposed that the acceleration of wear with increasing temperature in the range studied is associated with a tribocorrosion mechanism and that the higher carbide fraction in Stellite 3 resulted in its reduced wear rate compared to Stellite 6.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{4} - \field{note}{20 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{series}{22nd {International} {Conference} on {Wear} of {Materials}} - \field{title}{Comparison of the sliding wear behaviour of self-mated {HIPed} {Stellite} 3 and {Stellite} 6 in a simulated {PWR} water environment} - \field{urlday}{30} - \field{urlmonth}{6} - \field{urlyear}{2024} - \field{volume}{426-427} - \field{year}{2019} - \field{urldateera}{ce} - \field{pages}{1222\bibrangedash 1232} - \range{pages}{11} - \verb{doi} - \verb 10.1016/j.wear.2019.01.116 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S004316481930211X - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S004316481930211X - \endverb - \keyw{Cobalt-based alloys,Electron backscatter diffraction,HIP,Nuclear,Stellite} - \endentry - \entry{romoCavitationHighvelocitySlurry2012}{article}{}{} - \name{author}{4}{}{% - {{hash=abd07783347fdc165942b01479e16afb}{% - family={Romo}, - familyi={R\bibinitperiod}, - given={S.A.}, - giveni={S\bibinitperiod}}}% - {{hash=9c9837ed5fce5c7a1aeb233aa99aa04d}{% - family={Santa}, - familyi={S\bibinitperiod}, - given={J.F.}, - giveni={J\bibinitperiod}}}% - {{hash=fecaae68172b53756247ca68af700ed9}{% - family={Giraldo}, - familyi={G\bibinitperiod}, - given={J.E.}, - giveni={J\bibinitperiod}}}% - {{hash=467faf266d1206e4566fe6d0465b33f0}{% - family={Toro}, - familyi={T\bibinitperiod}, - given={A.}, - giveni={A\bibinitperiod}}}% - } - \list{language}{1}{% - {English}% - } - \strng{namehash}{285bcf9d2b83436d537b5e21b7fde046} - \strng{fullhash}{e0312588d226589c879f5d182ca350e9} - \strng{fullhashraw}{e0312588d226589c879f5d182ca350e9} - \strng{bibnamehash}{e0312588d226589c879f5d182ca350e9} - \strng{authorbibnamehash}{e0312588d226589c879f5d182ca350e9} - \strng{authornamehash}{285bcf9d2b83436d537b5e21b7fde046} - \strng{authorfullhash}{e0312588d226589c879f5d182ca350e9} - \strng{authorfullhashraw}{e0312588d226589c879f5d182ca350e9} - \field{sortinit}{R} - \field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{The cavitation and slurry erosion resistances of Stellite 6 coatings and 13-4 stainless steel were compared in laboratory. The Cavitation Resistance (CR) was measured according to ASTM G32 standard and the Slurry Erosion Resistance (SER) was tested in a high-velocity erosion tester under several impact angles. The results showed that the coatings improved the CR 15 times when compared to bare stainless steel. The SER of the coatings was also higher for all the impingement angles tested, the highest erosion rate being observed at 45°. The main wear mechanisms were micro-cracking (cavitation tests), and micro-cutting and micro-ploughing (slurry erosion tests). © 2011 Elsevier Ltd. All rights reserved.} - \field{issn}{0301679X (ISSN)} - \field{journaltitle}{Tribology International} - \field{note}{82 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{title}{Cavitation and high-velocity slurry erosion resistance of welded {Stellite} 6 alloy} - \field{volume}{47} - \field{year}{2012} - \field{pages}{16\bibrangedash 24} - \range{pages}{9} - \verb{doi} - \verb 10.1016/j.triboint.2011.10.003 - \endverb - \verb{urlraw} - \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856240362&doi=10.1016%2fj.triboint.2011.10.003&partnerID=40&md5=77bc5b529937543083c683cc6f5d689d - \endverb - \verb{url} - \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856240362&doi=10.1016%2fj.triboint.2011.10.003&partnerID=40&md5=77bc5b529937543083c683cc6f5d689d - \endverb - \keyw{Cavitation,Cavitation corrosion,Cavitation erosion,Cavitation resistance,Cerium alloys,Chromate coatings,Erosion,Erosion rates,High velocity,Impact angles,Impact resistance,Impingement angle,Micro-cutting,Slurry erosion,Stainless steel,Stellite,Stellite 6,Stellite 6 alloy,Stellite 6 coating,Tribology,Wear mechanisms,alloy} - \endentry - \entry{shinEffectMolybdenumMicrostructure2003}{article}{}{} - \name{author}{5}{}{% - {{hash=11c1c63fde4778e27fd93d2389dd1d9f}{% - family={Shin}, - familyi={S\bibinitperiod}, - given={Jong-Choul}, - giveni={J\bibinithyphendelim C\bibinitperiod}}}% - {{hash=4d7d3c5a5d25916fcbdacaec6e7b281c}{% - family={Doh}, - familyi={D\bibinitperiod}, - given={Jung-Man}, - giveni={J\bibinithyphendelim M\bibinitperiod}}}% - {{hash=9257782113324f27de8d34043cd84f7b}{% - family={Yoon}, - familyi={Y\bibinitperiod}, - given={Jin-Kook}, - giveni={J\bibinithyphendelim K\bibinitperiod}}}% - {{hash=f1733c8d49f956fedeb6a8c03ce455c9}{% - family={Lee}, - familyi={L\bibinitperiod}, - given={Dok-Yol}, - giveni={D\bibinithyphendelim Y\bibinitperiod}}}% - {{hash=d2534382552f3c10ee00cd39f0979de1}{% - family={Kim}, - familyi={K\bibinitperiod}, - given={Jae-Soo}, - giveni={J\bibinithyphendelim S\bibinitperiod}}}% - } - \strng{namehash}{35defe2b8f7d338cdec33698baeff00a} - \strng{fullhash}{178cbc46d086767ebf3c6301cad009cf} - \strng{fullhashraw}{178cbc46d086767ebf3c6301cad009cf} - \strng{bibnamehash}{178cbc46d086767ebf3c6301cad009cf} - \strng{authorbibnamehash}{178cbc46d086767ebf3c6301cad009cf} - \strng{authornamehash}{35defe2b8f7d338cdec33698baeff00a} - \strng{authorfullhash}{178cbc46d086767ebf3c6301cad009cf} - \strng{authorfullhashraw}{178cbc46d086767ebf3c6301cad009cf} - \field{sortinit}{S} - \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{The Stellite 6 hardfacing alloys with different Mo contents have been deposited on AISI 1045-carbon steel using a Plasma Transferred Arc (PTA) welding machine. The effect of Mo on the microstructures and wear resistance properties of the Stellite 6 hardfacing alloys were investigated using optical microscopy, scanning electron microscopy, electron probe microanalysis and X-ray diffraction. With an increase in Mo contents, the M23C6 and M6C type carbides were formed instead of Cr-rich M7C3 and M23C6 type carbides observed in the interdenritic region of the Mo-free Stellite 6 hardfacing alloy. The size of Cr-rich carbides in interdendritic region decreased, but that of M6C type carbide increased as well as the refinement of Co-rich dendrites. The volume fraction of Cr-rich carbides slightly increased, but that of M6C type carbide abruptly increased. This microstructural change was responsible for the improvement of the mechanical properties such as hardness and wear resistance of the Mo-modified Stellite 6 hardfacing alloy.} - \field{issn}{0257-8972} - \field{journaltitle}{Surface and Coatings Technology} - \field{month}{3} - \field{number}{2} - \field{title}{Effect of molybdenum on the microstructure and wear resistance of cobalt-base {Stellite} hardfacing alloys} - \field{urlday}{5} - \field{urlmonth}{3} - \field{urlyear}{2025} - \field{volume}{166} - \field{year}{2003} - \field{urldateera}{ce} - \field{pages}{117\bibrangedash 126} - \range{pages}{10} - \verb{doi} - \verb 10.1016/S0257-8972(02)00853-8 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0257897202008538 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0257897202008538 - \endverb - \keyw{Co-base Stellite alloys,Microstructure and wear resistance,Molybdenum,PTA} - \endentry - \entry{stoicaInfluenceHeattreatmentSliding2005}{article}{}{} - \name{author}{3}{}{% - {{hash=9ee308ed1264406c99dc3dc19fc74bbc}{% - family={Stoica}, - familyi={S\bibinitperiod}, - given={V.}, - giveni={V\bibinitperiod}}}% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=396db0229b4cd75917372e6b8a4c12ee}{% - family={Itsukaichi}, - familyi={I\bibinitperiod}, - given={T.}, - giveni={T\bibinitperiod}}}% - } - \list{language}{1}{% - {English}% - } - \strng{namehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{fullhash}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{fullhashraw}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{bibnamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{authorbibnamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{authornamehash}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{authorfullhash}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \strng{authorfullhashraw}{09c4b7a69ffaf05661ccd1c9f30d41c3} - \field{sortinit}{S} - \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{Functionally graded WC-NiCrBSi coatings were thermally sprayed using a High Velocity Oxy-Fuel (JP5000) system and heat-treated at 1200 °C in argon environment. The relative performance of the as-sprayed and heat-treated coatings was investigated in sliding wear under different tribological conditions of contact stress, and test couple configuration, using a high frequency reciprocating ball on plate rig. Test results are discussed with the help of microstructural evaluations and mechanical properties measurements. Results indicate that by heat-treating the coatings at a temperature of 1200 °C, it is possible to achieve higher wear resistance, both in terms of coating wear, as well as the total wear of the test couples. This was attributed to the improvements in the coating microstructure during the heat-treatment, which resulted in an improvement in coating's mechanical properties through the formation of hard phases, elimination of brittle W2C and W, and the establishment of metallurgical bonding within the coating microstructure. © 2005 Elsevier B.V. All rights reserved.} - \field{issn}{02578972 (ISSN)} - \field{journaltitle}{Surface and Coatings Technology} - \field{note}{41 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{1} - \field{title}{Influence of heat-treatment on the sliding wear of thermal spray cermet coatings} - \field{volume}{199} - \field{year}{2005} - \field{pages}{7\bibrangedash 21} - \range{pages}{15} - \verb{doi} - \verb 10.1016/j.surfcoat.2005.03.026 - \endverb - \verb{urlraw} - \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844464044&doi=10.1016%2fj.surfcoat.2005.03.026&partnerID=40&md5=6ad736723e828d39edf4a37c5975d2dc - \endverb - \verb{url} - \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844464044&doi=10.1016%2fj.surfcoat.2005.03.026&partnerID=40&md5=6ad736723e828d39edf4a37c5975d2dc - \endverb - \keyw{Bonding,Brittleness,Cermets,Coating microstructure,Frequencies,Functionally graded materials,Heat treatment,Heat-treated coatings,Heat-treatment,High Velocity Oxy-Fuel,Mechanical properties,Microstructure,Nickel compounds,Phase composition,Sliding wear,Sprayed coatings,Thermal spray coatings,Tribology,Tungsten compounds,Wear of materials,heat treatment,sliding wear} - \endentry - \entry{szalaEffectNitrogenIon2021}{article}{}{} - \name{author}{6}{}{% - {{hash=26ecda2187f0e2b702a2497a5dc3f27d}{% - family={Szala}, - familyi={S\bibinitperiod}, - given={M.}, - giveni={M\bibinitperiod}}}% - {{hash=b1f8638f62fc396f39212102aa9a7be4}{% - family={Chocyk}, - familyi={C\bibinitperiod}, - given={D.}, - giveni={D\bibinitperiod}}}% - {{hash=fa359615394426dff04c6f196de50a92}{% - family={Skic}, - familyi={S\bibinitperiod}, - given={A.}, - giveni={A\bibinitperiod}}}% - {{hash=735ac71614372e54c2c5b12c4a8b2037}{% - family={Kamiński}, - familyi={K\bibinitperiod}, - given={M.}, - giveni={M\bibinitperiod}}}% - {{hash=80f5de14d028c35ed21c52a0993eb44e}{% - family={Macek}, - familyi={M\bibinitperiod}, - given={W.}, - giveni={W\bibinitperiod}}}% - {{hash=2458b153bc1351893a163117b0b687eb}{% - family={Turek}, - familyi={T\bibinitperiod}, - given={M.}, - giveni={M\bibinitperiod}}}% - } - \list{language}{1}{% - {English}% - } - \strng{namehash}{0c580510ffd19c48fb276fd9bcbd3cc8} - \strng{fullhash}{ed8bfd0d39c94dcd76e642641bd4b638} - \strng{fullhashraw}{ed8bfd0d39c94dcd76e642641bd4b638} - \strng{bibnamehash}{ed8bfd0d39c94dcd76e642641bd4b638} - \strng{authorbibnamehash}{ed8bfd0d39c94dcd76e642641bd4b638} - \strng{authornamehash}{0c580510ffd19c48fb276fd9bcbd3cc8} - \strng{authorfullhash}{ed8bfd0d39c94dcd76e642641bd4b638} - \strng{authorfullhashraw}{ed8bfd0d39c94dcd76e642641bd4b638} - \field{sortinit}{S} - \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5*1016 cm-2 and 1*1017 cm-2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the "(hcp) to (fcc) structure. Unimplanted stellite "-rich matrix is less prone to plastic deformation than and consequently, increase of phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable structure formed by ion implantation consumes the cavitation load for work-hardening and ! " martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials. © 2021 by the authors.} - \field{issn}{19961944 (ISSN)} - \field{journaltitle}{Materials} - \field{note}{Publisher: MDPI AG} - \field{number}{9} - \field{title}{Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solution phase transformations of {HIPed} stellite 6} - \field{volume}{14} - \field{year}{2021} - \verb{doi} - \verb 10.3390/ma14092324 - \endverb - \verb{urlraw} - \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105941706&doi=10.3390%2fma14092324&partnerID=40&md5=4c846be7d06977d42697c88c326e5923 - \endverb - \verb{url} - \verb https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105941706&doi=10.3390%2fma14092324&partnerID=40&md5=4c846be7d06977d42697c88c326e5923 - \endverb - \keyw{AISI-304 stainless steel,Atomic force microscopy,Carbides,Cavitation,Cavitation erosion,Cavitation erosion resistance,Chromium compounds,Cobalt alloy,Cobalt alloys,Cracks propagation,Damage mechanism,Engineering materials,Erosion,Failure analysis,Ion implantation,Ions,Linear transformations,Martensitic transformations,Mean depth of erosions,Metastable structures,Nitrogen,Nitrogen ion implantations,Phase transformation,Plastic deformation,Stellite,Stellite 6,Strain hardening,Surface profilometers,Wear,X ray diffraction} - \endentry - \entry{tawancyFccHcpTransformation1986}{article}{}{} - \name{author}{3}{}{% - {{hash=f3547527506994c69c774b2c0d77ac73}{% - family={Tawancy}, - familyi={T\bibinitperiod}, - given={H.\bibnamedelimi M.}, - giveni={H\bibinitperiod\bibinitdelim M\bibinitperiod}}}% - {{hash=f7d566a34064f3d0ccab33dde7a34069}{% - family={Ishwar}, - familyi={I\bibinitperiod}, - given={V.\bibnamedelimi R.}, - giveni={V\bibinitperiod\bibinitdelim R\bibinitperiod}}}% - {{hash=6f964da88776c95344b60d3d9b6241fa}{% - family={Lewis}, - familyi={L\bibinitperiod}, - given={B.\bibnamedelimi E.}, - giveni={B\bibinitperiod\bibinitdelim E\bibinitperiod}}}% - } - \list{language}{1}{% - {en}% - } - \strng{namehash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{fullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{fullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{bibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{authorbibnamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{authornamehash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{authorfullhash}{b41586e8f4d7f9d36d48a78941a8c3b5} - \strng{authorfullhashraw}{b41586e8f4d7f9d36d48a78941a8c3b5} - \field{sortinit}{T} - \field{sortinithash}{9af77f0292593c26bde9a56e688eaee9} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{issn}{1573-4811} - \field{journaltitle}{Journal of Materials Science Letters} - \field{month}{3} - \field{note}{33 citations (Semantic Scholar/DOI) [2025-04-13]} - \field{number}{3} - \field{title}{On the fcc → hcp transformation in a cobalt-base superalloy ({Haynes} alloy {No}. 25)} - \field{urlday}{13} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{5} - \field{year}{1986} - \field{urldateera}{ce} - \field{pages}{337\bibrangedash 341} - \range{pages}{5} - \verb{doi} - \verb 10.1007/BF01748098 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1007/BF01748098 - \endverb - \verb{url} - \verb https://doi.org/10.1007/BF01748098 - \endverb - \keyw{Haynes Alloy,Polymer,Polymers} - \endentry - \entry{thiruvengadamTheoryErosion1967}{article}{}{} - \name{author}{1}{}{% - {{hash=d3cae98a50611da092efbc498a5a497c}{% - family={Thiruvengadam}, - familyi={T\bibinitperiod}, - given={Alagu}, - giveni={A\bibinitperiod}}}% - } - \strng{namehash}{d3cae98a50611da092efbc498a5a497c} - \strng{fullhash}{d3cae98a50611da092efbc498a5a497c} - \strng{fullhashraw}{d3cae98a50611da092efbc498a5a497c} - \strng{bibnamehash}{d3cae98a50611da092efbc498a5a497c} - \strng{authorbibnamehash}{d3cae98a50611da092efbc498a5a497c} - \strng{authornamehash}{d3cae98a50611da092efbc498a5a497c} - \strng{authorfullhash}{d3cae98a50611da092efbc498a5a497c} - \strng{authorfullhashraw}{d3cae98a50611da092efbc498a5a497c} - \field{sortinit}{T} - \field{sortinithash}{9af77f0292593c26bde9a56e688eaee9} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{An elementary theory of erosion is derived based on the assumptions of 'accumulation' and 'attenuation' of the energies of impact causing erosion. This theory quantitatively predicts the relative intensity of erosion as a function of relative time and this prediction is in fair agreement with experimental observations. Since the intensity of collision, the distance of shock transmission and the material failure are all statistical events, a generalization of the elementary theory is suggested. Some of the practical results of this theory are the predictions of the cumulative depth of erosion, the determination of erosion strength and the method of correlation with other parameters such as liquid properties and hydrodynamic factors. Modifications of this theory for brittle and viscoelastic materials are also suggested. (Author)} - \field{journaltitle}{Proc. 2nd Meersburg Conf. on Rain Erosion and Allied Phenomena} - \field{month}{3} - \field{title}{Theory of erosion} - \field{volume}{2} - \field{year}{1967} - \field{pages}{53} - \range{pages}{1} - \endentry - \entry{yuInfluenceManufacturingProcess2008}{article}{}{} - \name{author}{4}{}{% - {{hash=f46cff6a47143fdbd36ae8842919e073}{% - family={Yu}, - familyi={Y\bibinitperiod}, - given={H.}, - giveni={H\bibinitperiod}}}% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=720a4573d41f2302c51d8dfc20eb7025}{% - family={Lovelock}, - familyi={L\bibinitperiod}, - given={H.\bibnamedelimi de\bibnamedelima Villiers}, - giveni={H\bibinitperiod\bibinitdelim d\bibinitperiod\bibinitdelim V\bibinitperiod}}}% - {{hash=0e68382b25995f7a55c9b600def7c365}{% - family={Davies}, - familyi={D\bibinitperiod}, - given={S.}, - giveni={S\bibinitperiod}}}% - } - \strng{namehash}{56581c67a86bce08f334a1ace4c9fccb} - \strng{fullhash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{fullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{bibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{authorbibnamehash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{authornamehash}{56581c67a86bce08f334a1ace4c9fccb} - \strng{authorfullhash}{57ca415fdcbe0d531a76658a78b7a3d4} - \strng{authorfullhashraw}{57ca415fdcbe0d531a76658a78b7a3d4} - \field{sortinit}{Y} - \field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{Manufacturing process routes of materials can be adapted to manipulate their microstructure and hence their tribological performance. As industrial demands push the applications of tribological materials to harsher environments of higher stress, starved lubrication, and improved life performance, manufacturing processes can be tailored to optimize their use in particular engineering applications. The aim of this paper was therefore to comprehend the structure-property relationships of a wear resistant cobalt-based alloy (Stellite 6) produced from two different processing routes of powder consolidated hot isostatic pressing (HIPing) and casting. This alloy had a nominal wt \% composition of Co–28Cr–4.5W–1C, which is commonly used in wear related applications in harsh tribological environments. However, the coarse carbide structure of the cast alloy results in higher brittleness and lower toughness. Hence this research was conducted to comprehend if carbide refinement, caused by changing the processing route to HIPing, could improve the tribomechanical performance of this alloy. Microstructural and tribomechanical evaluations, which involved hardness, impact toughness, abrasive wear, sliding wear, and contact fatigue performance tests, indicated that despite the similar abrasive and sliding wear resistance of both alloys, the HIPed alloy exhibited an improved contact fatigue and impact toughness performance in comparison to the cast counterpart. This difference in behavior is discussed in terms of the structure-property relationships. Results of this research indicated that the HIPing process could provide additional impact and fatigue resistance to this alloy without compromising the hardness and the abrasive/sliding wear resistance, which makes the HIPed alloy suitable for relatively higher stress applications. Results are also compared with a previously reported investigation of the Stellite 20 alloy, which had a much higher carbide content in comparison to the Stellite 6 alloy, caused by the variation in the content of alloying elements. These results indicated that the fatigue resistance did not follow the expected trend of the improvement in impact toughness. In terms of the design process, the combination of hardness, toughness, and carbide content show a complex interdependency, where a 40\% reduction in the average hardness and 60\% reduction in carbide content had a more dominating effect on the contact fatigue resistance when compared with an order of magnitude improvement in the impact toughness of the HIPed Stellite 6 alloy.} - \field{issn}{0742-4787} - \field{journaltitle}{Journal of Tribology} - \field{month}{12} - \field{note}{46 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{011601} - \field{title}{Influence of {Manufacturing} {Process} and {Alloying} {Element} {Content} on the {Tribomechanical} {Properties} of {Cobalt}-{Based} {Alloys}} - \field{urlday}{13} - \field{urlmonth}{7} - \field{urlyear}{2024} - \field{volume}{131} - \field{year}{2008} - \field{urldateera}{ce} - \verb{doi} - \verb 10.1115/1.2991122 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1115/1.2991122 - \endverb - \verb{url} - \verb https://doi.org/10.1115/1.2991122 - \endverb - \endentry - \entry{yuComparisonTriboMechanicalProperties2007}{article}{}{} - \name{author}{3}{}{% - {{hash=f46cff6a47143fdbd36ae8842919e073}{% - family={Yu}, - familyi={Y\bibinitperiod}, - given={H.}, - giveni={H\bibinitperiod}}}% - {{hash=73be20d7f1a5cbb337df0ca58a8fa420}{% - family={Ahmed}, - familyi={A\bibinitperiod}, - given={R.}, - giveni={R\bibinitperiod}}}% - {{hash=39fbce992265c4dd42ff7cb6ab804ded}{% - family={Villiers\bibnamedelima Lovelock}, - familyi={V\bibinitperiod\bibinitdelim L\bibinitperiod}, - given={H.}, - giveni={H\bibinitperiod}, - prefix={de}, - prefixi={d\bibinitperiod}}}% - } - \strng{namehash}{8e67a0a25c7114030e7e739ed034990b} - \strng{fullhash}{8e67a0a25c7114030e7e739ed034990b} - \strng{fullhashraw}{8e67a0a25c7114030e7e739ed034990b} - \strng{bibnamehash}{8e67a0a25c7114030e7e739ed034990b} - \strng{authorbibnamehash}{8e67a0a25c7114030e7e739ed034990b} - \strng{authornamehash}{8e67a0a25c7114030e7e739ed034990b} - \strng{authorfullhash}{8e67a0a25c7114030e7e739ed034990b} - \strng{authorfullhashraw}{8e67a0a25c7114030e7e739ed034990b} - \field{sortinit}{Y} - \field{sortinithash}{fd67ad5a9ef0f7456bdd9aab10fe1495} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt \% composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.} - \field{issn}{0742-4787} - \field{journaltitle}{Journal of Tribology} - \field{month}{1} - \field{note}{37 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{3} - \field{title}{A {Comparison} of the {Tribo}-{Mechanical} {Properties} of a {Wear} {Resistant} {Cobalt}-{Based} {Alloy} {Produced} by {Different} {Manufacturing} {Processes}} - \field{urlday}{17} - \field{urlmonth}{11} - \field{urlyear}{2024} - \field{volume}{129} - \field{year}{2007} - \field{urldateera}{ce} - \field{pages}{586\bibrangedash 594} - \range{pages}{9} - \verb{doi} - \verb 10.1115/1.2736450 - \endverb - \verb{urlraw} - \verb https://doi.org/10.1115/1.2736450 - \endverb - \verb{url} - \verb https://doi.org/10.1115/1.2736450 - \endverb - \endentry - \entry{zhangFrictionWearCharacterization2002}{article}{}{} - \name{author}{2}{}{% - {{hash=9ac5c6e1891a9d327b6cf9dce9924eaa}{% - family={Zhang}, - familyi={Z\bibinitperiod}, - given={K}, - giveni={K\bibinitperiod}}}% - {{hash=cb8741204d7e12b6db11ee35f025c97c}{% - family={Battiston}, - familyi={B\bibinitperiod}, - given={L}, - giveni={L\bibinitperiod}}}% - } - \strng{namehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{fullhash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{fullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{bibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authorbibnamehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authornamehash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authorfullhash}{bf171f4e97c3179e4c0d9908cf319a1f} - \strng{authorfullhashraw}{bf171f4e97c3179e4c0d9908cf319a1f} - \field{sortinit}{Z} - \field{sortinithash}{96892c0b0a36bb8557c40c49813d48b3} - \field{labelnamesource}{author} - \field{labeltitlesource}{title} - \field{abstract}{A full-journal submerged bearing test rig was built to evaluate the friction and wear behavior of materials in zinc alloy baths. Some cobalt- and iron-based superalloys were tested using this rig at conditions similar to those of a continuous galvanizing operation (load and bath chemistry). Metallographic and chemical analyses were conducted on tested samples to characterize the wear. It was found that a commonly used cobalt-based material (Stellite \#6) not only suffered considerable wear but also reacted with zinc baths to form intermetallic compounds. Other cobalt- and iron-based superalloys appeared to have negligible reaction with the zinc baths in the short-term tests, but cracks developed in the sub-surface, suggesting that the materials mainly experienced surface fatigue wear. The commonly used cobalt-based superalloy mostly experienced abrasive wear.} - \field{issn}{0043-1648} - \field{journaltitle}{Wear} - \field{month}{2} - \field{note}{33 citations (Semantic Scholar/DOI) [2025-04-12]} - \field{number}{3} - \field{title}{Friction and wear characterization of some cobalt- and iron-based superalloys in zinc alloy baths} - \field{urlday}{1} - \field{urlmonth}{4} - \field{urlyear}{2025} - \field{volume}{252} - \field{year}{2002} - \field{urldateera}{ce} - \field{pages}{332\bibrangedash 344} - \range{pages}{13} - \verb{doi} - \verb 10.1016/S0043-1648(01)00889-4 - \endverb - \verb{urlraw} - \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 - \endverb - \verb{url} - \verb https://www.sciencedirect.com/science/article/pii/S0043164801008894 - \endverb - \keyw{Friction and wear,Galvanizing,Submerged hardware,Superalloys} - \endentry - \enddatalist -\endrefsection -\endinput - +version https://git-lfs.github.com/spec/v1 +oid sha256:a80f31781ffd72529dc9dd47d4bf8d699428b745c43430177857d3e04b36a38c +size 134995 diff --git a/Thesis.lof b/Thesis.lof new file mode 100644 index 0000000..4540701 --- /dev/null +++ b/Thesis.lof @@ -0,0 +1,10 @@ +\babel@toc {english}{}\relax +\contentsline {xpart}{Chapters}{2}{part.1}% +\addvspace {10\p@ } +\contentsline {xchapter}{Introduction}{2}{chapter.1}% +\addvspace {10\p@ } +\contentsline {xchapter}{Analytical Investigations}{9}{chapter.2}% +\addvspace {10\p@ } +\contentsline {xchapter}{Experimental Investigations}{12}{chapter.3}% +\addvspace {10\p@ } +\contentsline {xchapter}{Discussion}{13}{chapter.4}% diff --git a/Thesis.lot b/Thesis.lot new file mode 100644 index 0000000..4540701 --- /dev/null +++ b/Thesis.lot @@ -0,0 +1,10 @@ +\babel@toc {english}{}\relax +\contentsline {xpart}{Chapters}{2}{part.1}% +\addvspace {10\p@ } +\contentsline {xchapter}{Introduction}{2}{chapter.1}% +\addvspace {10\p@ } +\contentsline {xchapter}{Analytical Investigations}{9}{chapter.2}% +\addvspace {10\p@ } +\contentsline {xchapter}{Experimental Investigations}{12}{chapter.3}% +\addvspace {10\p@ } +\contentsline {xchapter}{Discussion}{13}{chapter.4}% diff --git a/Thesis.mtc1 b/Thesis.mtc1 index d34c05a..223f1f2 100644 --- a/Thesis.mtc1 +++ b/Thesis.mtc1 @@ -1,10 +1,11 @@ -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.1}Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.1}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.2}Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.2}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.3}Paragraph 6: Influence of HIPing\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 5}{section.1.3}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.4}General Background}{\reset@font\mtcSfont 5}{section.1.4}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.5}Stellite 1}{\reset@font\mtcSfont 6}{section.1.5}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.6}Stellites}{\reset@font\mtcSfont 7}{section.1.6}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.7}Objectives and Scope of the Research Work}{\reset@font\mtcSfont 7}{section.1.7}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.8}Thesis Outline}{\reset@font\mtcSfont 7}{section.1.8}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.9}Literature Survey}{\reset@font\mtcSfont 7}{section.1.9}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.10}Cavitation Tests}{\reset@font\mtcSfont 7}{section.1.10}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.1}Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 6}{section.1.1}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.2}Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 6}{section.1.2}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.3}Paragraph 6: Influence of HIPing\hfill {}\textsc {ignore}}{\reset@font\mtcSfont 6}{section.1.3}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.4}Paragraph: Cavitation Erosion Resistance}{\reset@font\mtcSfont 6}{section.1.4}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.5}General Background}{\reset@font\mtcSfont 6}{section.1.5}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.6}Stellite 1}{\reset@font\mtcSfont 8}{section.1.6}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.7}Stellites}{\reset@font\mtcSfont 8}{section.1.7}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.8}Objectives and Scope of the Research Work}{\reset@font\mtcSfont 8}{section.1.8}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.9}Thesis Outline}{\reset@font\mtcSfont 8}{section.1.9}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.10}Literature Survey}{\reset@font\mtcSfont 8}{section.1.10}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {1.11}Cavitation Tests}{\reset@font\mtcSfont 8}{section.1.11}} diff --git a/Thesis.mtc2 b/Thesis.mtc2 index e69de29..70db0fe 100644 --- a/Thesis.mtc2 +++ b/Thesis.mtc2 @@ -0,0 +1,2 @@ +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {2.1}Strain hardening}{\reset@font\mtcSfont 9}{section.2.1}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {2.2}Correlative empirical methods}{\reset@font\mtcSfont 9}{section.2.2}} diff --git a/Thesis.mtc3 b/Thesis.mtc3 index 87e98a7..59ce9d2 100644 --- a/Thesis.mtc3 +++ b/Thesis.mtc3 @@ -1 +1 @@ -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {3.1}Materials and Microstructure}{\reset@font\mtcSfont 9}{section.3.1}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {3.1}Materials and Microstructure}{\reset@font\mtcSfont 12}{section.3.1}} diff --git a/Thesis.mtc4 b/Thesis.mtc4 index b944881..ab5209c 100644 --- a/Thesis.mtc4 +++ b/Thesis.mtc4 @@ -1,5 +1,5 @@ -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {4.1}Experimental Test Procedure}{\reset@font\mtcSfont 10}{section.4.1}} -{\reset@font\mtcSSfont\mtc@string\contentsline{subsection}{\noexpand \leavevmode \numberline {4.1.1}Hardness Tests}{\reset@font\mtcSSfont 10}{subsection.4.1.1}} -{\reset@font\mtcSSfont\mtc@string\contentsline{subsection}{\noexpand \leavevmode \numberline {4.1.2}Cavitation}{\reset@font\mtcSSfont 10}{subsection.4.1.2}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {4.2}Relationships between cavitation erosion resistance and mechanical properties}{\reset@font\mtcSfont 10}{section.4.2}} -{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {4.3}Influence of vibratory amplitude}{\reset@font\mtcSfont 10}{section.4.3}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {4.1}Experimental Test Procedure}{\reset@font\mtcSfont 13}{section.4.1}} +{\reset@font\mtcSSfont\mtc@string\contentsline{subsection}{\noexpand \leavevmode \numberline {4.1.1}Hardness Tests}{\reset@font\mtcSSfont 13}{subsection.4.1.1}} +{\reset@font\mtcSSfont\mtc@string\contentsline{subsection}{\noexpand \leavevmode \numberline {4.1.2}Cavitation}{\reset@font\mtcSSfont 13}{subsection.4.1.2}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {4.2}Relationships between cavitation erosion resistance and mechanical properties}{\reset@font\mtcSfont 13}{section.4.2}} +{\reset@font\mtcSfont\mtc@string\contentsline{section}{\noexpand \leavevmode \numberline {4.3}Influence of vibratory amplitude}{\reset@font\mtcSfont 13}{section.4.3}} diff --git a/Thesis.mtc5 b/Thesis.mtc5 new file mode 100644 index 0000000..e69de29 diff --git a/Thesis.org b/Thesis.org index c8e6662..5c4c16d 100644 --- a/Thesis.org +++ b/Thesis.org @@ -8,17 +8,18 @@ ** Packages :ignore_heading: -#+LaTeX_HEADER: \usepackage{multirow} -#+LaTeX_HEADER: \usepackage[flushleft]{threeparttable} % http://ctan.org/pkg/threeparttable -#+LaTeX_HEADER: \usepackage{booktabs,caption} #+LaTeX_HEADER: \graphicspath{{expt/}} +#+LaTeX_HEADER: \usepackage{afterpage} #+LaTeX_HEADER: \usepackage{pdflscape} +#+LaTeX_HEADER: \usepackage{booktabs,caption} #+LaTeX_HEADER: \usepackage{longtable} -#+LaTeX_HEADER: \usepackage{threeparttablex} +#+LaTeX_HEADER: \usepackage[flushleft]{threeparttable} #+LaTeX_HEADER: \usepackage{multirow} #+LaTeX_HEADER: \usepackage{caption} #+LaTeX_HEADER: \usepackage{booktabs} % Added for nicer rules +#+LaTeX_HEADER: \usepackage{textcomp} +#+LaTeX_HEADER: \usepackage{mathtools} #+LaTeX_HEADER: \usepackage{graphicx} % include graphics #+LaTeX_HEADER: \usepackage{fancyhdr} % layout @@ -28,7 +29,7 @@ #+LaTeX_HEADER: \usepackage[T1]{fontenc} % font #+LaTeX_HEADER: \usepackage{csquotes} #+LaTeX_HEADER: %\usepackage[defernumbers=true, sorting=none]{biblatex} -#+LaTeX_HEADER: \usepackage[style=ieee, backend=biber, maxbibnames=999]{biblatex} +#+LaTeX_HEADER: \usepackage[defernumbers=true, bibstyle=ieee, citestyle=numeric-comp, backend=biber, maxbibnames=999]{biblatex} #+LaTeX_HEADER: \usepackage{setspace} % spacing #+LaTeX_HEADER: % \usepackage[left=4cm,right=2cm,top=2cm,bottom=2cm]{geometry} @@ -172,9 +173,9 @@ #+LaTeX_HEADER: %% modified reference function #+LaTeX_HEADER: %% https://tex.stackexchange.com/a/438998 -#+LaTeX_HEADER: \newcommand\eref[1]{equation~(\ref{#1})} -#+LaTeX_HEADER: \newcommand\tref[1]{table~\ref{#1}} -#+LaTeX_HEADER: \newcommand\fref[1]{figure~\ref{#1}} +#+LaTeX_HEADER: \newcommand\eref[1]{Equation~(\ref{#1})} +#+LaTeX_HEADER: \newcommand\tref[1]{Table~\ref{#1}} +#+LaTeX_HEADER: \newcommand\fref[1]{Figure~\ref{#1}} #+LaTeX_HEADER: %% 1.5 line spacing #+LaTeX_HEADER: \setstretch{1.5} @@ -206,8 +207,7 @@ ** Acronyms :ignore_heading: -#+LaTeX_HEADER: \newacronym{gcd}{GCD}{Greatest Common Divisor} -#+LaTeX_HEADER: \newacronym{lcm}{LCM}{Least Common Multiple} + ** Packages 2 :ignore_heading: @@ -217,7 +217,7 @@ #+LaTeX: \pagestyle{empty} # #+LaTeX: \input{preliminaries/1-titlepages} -#+BEGIN_LATEX +#+begin_export latex \begin{center} \vspace*{15pt}\par \setstretch{1} @@ -263,8 +263,7 @@ The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. \end{flushleft} \end{center} - -#+END_LATEX +#+end_export ** Abstract :ignore_heading: @@ -272,7 +271,7 @@ The copyright in this thesis is owned by the author. Any quotation from the thes # also read the comment below, for table of content and other # #+LaTeX: % \pagestyle{preliminary} -#+BEGIN_LATEX +#+begin_export latex \clearpage \begin{center} \LARGE\textbf {Abstract} @@ -281,11 +280,11 @@ The copyright in this thesis is owned by the author. Any quotation from the thes \noindent In accordance with the Academic Regulations the thesis must contain an abstract preferably not exceeding 200 words, bound in to precede the thesis. The abstract should appear on its own, on a single page. The format should be the same as that of the main text. The abstract should provide a synopsis of the thesis and shall state clearly the nature and scope of the research undertaken and of the contribution made to the knowledge of the subject treated. There should be a brief statement of the method of investigation where appropriate, an outline of the major divisions or principal arguments of the work and a summary of any conclusions reached. The abstract must follow the Title Page. -#+END_LATEX +#+end_export ** Dedication & Acknowledgements :ignore_heading: -#+BEGIN_LATEX +#+begin_export latex \clearpage \begin{center} \LARGE\textbf {Dedication} @@ -294,9 +293,7 @@ In accordance with the Academic Regulations the thesis must contain an abstract If a dedication is included then it should be immediately after the Abstract page.\par I don't what it is actually. -#+END_LATEX -#+BEGIN_LATEX \clearpage \begin{center} \LARGE\textbf {Acknowledgements} @@ -304,22 +301,49 @@ I don't what it is actually. \vspace{5pt} \noindent I wanna thanks all coffee and tea manufacturers and sellers that made the completion of this work possible. -#+END_LATEX +#+end_export ** COMMENT Declaration :ignore_heading: #+LaTeX: \clearpage #+LaTeX: % % read about declaration in file #+LaTeX: % % \input{Preliminaries/5-declaration} #+LaTeX: \includepdf[pages=-]{preliminaries/5-declaration.pdf} -#+LaTeX: + +** TOC, Tables, Figures, Glossary :ignore_heading: #+LaTeX: { #+LaTeX: \setstretch{1} #+LaTeX: \hypersetup{linkcolor=black} #+LaTeX: \tableofcontents + +*** Tables :ignore_heading: #+LaTeX: \listoftables % optional + +*** Figures :ignore_heading: + #+LaTeX: \listoffigures % optional + +*** Glossary :ignore_heading: + +# #+LaTeX_HEADER: \newacronym{gcd}{GCD}{Greatest Common Divisor} +# #+LaTeX_HEADER: \newacronym{lcm}{LCM}{Least Common Multiple} + +#+LaTeX_HEADER: \newacronym{sem}{SEM}{Scanning Electron Microscope/Microscopy} +#+LaTeX_HEADER: \newacronym{edx}{EDX}{Energy-Dispersive X-ray} +#+LaTeX_HEADER: \newacronym{xrd}{XRD}{X-ray Diffraction} +#+LaTeX_HEADER: \newacronym{hv}{HV}{Hardness Vickers Scale} +#+LaTeX_HEADER: \newacronym{hip}{HIP}{Hot Isostatically Pressed} +#+LaTeX_HEADER: \newacronym{fcc}{FCC}{Face Centred Cubic} +#+LaTeX_HEADER: \newacronym{hcp}{HCP}{Hexagonal Close Packed} +#+LaTeX_HEADER: \newacronym{se}{SE}{Secondary Electrons} +#+LaTeX_HEADER: \newacronym{bse}{BSE}{Backscatter Electrons} +#+LaTeX_HEADER: \newacronym{pdf}{PDF}{Powder Diffraction File} + #+LaTeX: \glsaddall % this is to include all acronym. You can do a sort of citation for acronym and include only the one you use, Look at the glossary package for details. #+LaTeX: \printnoidxglossary[type=\acronymtype, title=Glossary] % optional +#+LaTeX: } + +*** COMMENT Our own publications +#+LaTeX: { #+LaTeX: %% put your publications in BibMine.bib #+LaTeX: %% They will be displayed here #+LaTeX: \begin{refsection}[BibMine.bib] @@ -339,7 +363,10 @@ I don't what it is actually. ** Introduction -*** Paragraph 1: Introduction to Stellite Alloys for Hostile Environments :ignore_heading: +*** Paragraph: Cavitation :ignore_heading: + + +*** Paragraph: Introduction to Stellite Alloys for Hostile Environments :ignore_heading: #+BEGIN_COMMENT - [X] What they are and where they came from. @@ -350,29 +377,27 @@ I don't what it is actually. Stellite 6 with nominal composition #+END_COMMENT -Stellites are a cobalt-base superalloy used in aggresive service environments due to retention of strength, wear resistance, and oxidation resistance at high temperature \cite{ahmedStructurePropertyRelationships2014}. - -Originating in 1907 with Elwood Haynes's development of alloys like Stellite 6, Stellites quickly found use in orthopedic implants, machine tools, and nuclear components, and new variations on the original CoCrWC and CoCrMoC alloys are spreading to new sectors like oil & gas and chemical processing \cite{malayogluComparingPerformanceHIPed2003, ahmedStructurePropertyRelationships2014}. - - +Stellites are cobalt-base superalloys used in aggresive service environments due to retention of strength, wear resistance, and oxidation resistance at high temperature \cite{ahmedStructurePropertyRelationships2014, shinEffectMolybdenumMicrostructure2003}. Originating with Elwood Haynes's development of alloys like Stellite 6 in the early 1900s \cite{hasanBasicsStellitesMachining2016}, stellites quickly found use in medical implants & tools, machine tools, and nuclear components, and new variations on the original CoCrWC and CoCrMoC alloys are spreading to new sectors like oil & gas and chemical processing \cite{malayogluComparingPerformanceHIPed2003, ahmedStructurePropertyRelationships2014, raghuRecentDevelopmentsWear1997}. *** Paragraph: Impact of Composition, Microstructure, and Processing on Corrosion and Cavitation Performance :ignore_heading: -Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, 0.1-3.3 wt C, and optional trace elements of Fe, Ni, Si, P, S, B, Ln, Mn, as seen in Table \ref{tab:stellite_composition} \cite{ahmedMappingMechanicalProperties2023, alimardaniEffectLocalizedDynamic2010, ashworthMicrostructurePropertyRelationships1999, bunchCorrosionGallingResistant1989, davis2000nickel, desaiEffectCarbideSize1984, ferozhkhanMetallurgicalStudyStellite2017, pacquentinTemperatureInfluenceRepair2025, ratiaComparisonSlidingWear2019, zhangFrictionWearCharacterization2002}. The microstructure of Stellite alloys consists of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., $M_{7}C_{3}$, $M_{23}C_{6}$), and W/Mo (e.g. $MC$, $M_{6}C$ ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. +#+BEGIN_COMMENT +- [X] What they are and where they came from. + + [ ] Main alloying elements and ref to tab:stellite_composition + + [ ] Describe the microstructure briefly + + [ ] Carbon grades +#+END_COMMENT + +The main alloying elements in Stellite alloys are cobalt (Co), chromium (25-33 wt% Cr), tungsten (0-18 wt% W), molybdenum (0-18 wt% Mo), carbon (0.1-3.3 wt% C), and trace elements iron (Fe), nickel (Ni), silicon (Si), phosphorus (P), sulphur (S), boron (B), lanthanum (La), & manganese (Mn); \tref{tab:stellite_composition} summarizes the nominal and measured composition of commonly used Stellite alloys \cite{ahmedMappingMechanicalProperties2023, alimardaniEffectLocalizedDynamic2010, ashworthMicrostructurePropertyRelationships1999, bunchCorrosionGallingResistant1989, davis2000nickel, desaiEffectCarbideSize1984, ferozhkhanMetallurgicalStudyStellite2017, pacquentinTemperatureInfluenceRepair2025, ratiaComparisonSlidingWear2019, zhangFrictionWearCharacterization2002}. Stellite alloys possess a composite-like microstructure, combining a cobalt-rich matrix strengthened by solid solutions of chromium, tungsten, & molybdenum, with hard carbide phases with carbide formers Cr (of carbide type $\textrm{M}_{7}\textrm{C}_{3}$ & $\textrm{M}_{23}\textrm{C}_{6}$) and W/Mo (of carbide type $\textrm{MC}$ & $\textrm{M}_{6}\textrm{C}$), that impede wear and crack propagation \cite{ahmedSlidingWearBlended2021a, crookCobaltbaseAlloysResist1994}. The proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), which greatly influence alloy performance and intended applications; high carbon alloy (>1.2 wt%) have greater carbide formation and are primarily used for wear resistance, low carbon alloys (<0.5 wt%) are used for enhanced corrosion resistance, while medium carbon alloys (0.5 wt% - 1.2 wt%) are used in applications requiring a combination of wear and corrosion resistance \cite{davis2000nickel}. + +# In addition to the solid solution toughness and carbide hardness, the stress-induced FCC \textrightarrow{} HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. **** Table: Show the table of stellite compositions :ignore_heading: -# \begin{landscape} -# \begin{table} -# \caption{Stellite Compositions} -# \label{tab:stellite_composition} -# \begin{threeparttable} -# \begin{table}{lllllllllllllllll} - -#+BEGIN_LATEX +#+begin_export latex +\afterpage{% \begin{landscape} \begin{ThreePartTable} -\centering \caption{Stellite Compositions} \label{tab:stellite_composition} @@ -381,9 +406,9 @@ Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, 0.1-3.3 wt C, and optional t % \toprule & \multicolumn{2}{c}{Base} & \multicolumn{2}{c}{Refractory} & Carbon & \multicolumn{8}{c}{Others} & \multicolumn{3}{c}{} \\ \toprule -Alloy & +\textbf{Alloy} & \textbf{Co} & \textbf{Cr} & \textbf{W} & \textbf{Mo} & \textbf{C} & \textbf{Fe} & -\textbf{Ni} & \textbf{Si} & \textbf{P} & \textbf{S} & \textbf{B} & \textbf{Ln} & +\textbf{Ni} & \textbf{Si} & \textbf{P} & \textbf{S} & \textbf{B} & \textbf{La} & \textbf{Mn} & \textbf{Ref} & \textbf{Process Type} & \textbf{Observation} \\ \midrule @@ -505,25 +530,87 @@ Stellite 19 % & 37.2 & 33 & & 18 & 2.5 & 3 & 3 & 1.5 & & & 0.3 & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ \end{longtable} -\begin{TableNotes} +\begin{tablenotes} + \small \item[a] Hot Isostatic Pressing \item[b] Inductively coupled plasma atomic emission spectroscopy \item[c] Shielded metal arc welding \item[d] Gas tungsten Arc Welding \item[e] Plasma transfered Arc Welding -\end{TableNotes} +\end{tablenotes} \end{ThreePartTable} \end{landscape} -#+END_LaTeX +} +#+end_export + + + +*** Paragraph: Co phases :ignore_heading: + + +The Co solid solution in Stellites is a metastable fcc crystal with a very low stacking fault energy. + +\cite{davis2000nickel, frenkMicrostructuralEffectsSliding1994} + +# One of the main applications of Stellite alloys can be wear and erosion resistance, which results from various carbides and Co solid solution [1], [7]. Cobalt imparts to its alloys an unstable fcc crystal structure with a very low stacking fault energy. + +# The cubic FCC phase of cobalt (ICDD 00-015-0806) +# The hexagonal HCP phase of cobalt (ICDD 01-071-4239) + +# The wear resistance of Stellite alloys benefits from the strain-induced face-centered cubic (FCC) to hexagonal closepacked (HCP) transformation of Co \cite{collierTribologicalPerformanceMolybdenum2020, ahmedFrictionWearCobaltBase2017} + + +# I *love* this paragraph +# https://doi.org/10.1016/j.surfcoat.2018.11.011 +# The ε-Co and γ-Co phase are the main phases in Co alloys [39]. According to the phase diagram, the ε-Co phase is more stable at room temperature [40]. However, the γ-Co to ε-Co transformation rarely occurs under normal cooling conditions, and as a result, the γ-Co phase is generally retained at room temperature [39], as we found in the as-deposited Stellite 6 coatings. Nevertheless, this transformation can be triggered athermally (e.g. quenching from temperature of γ-Co) [25,41], isothermally (e.g. aging at temperatures between 650 °C and 950 °C) [35,42,43], or by strain [30,31]. In this study, the thermal fatigue process was achieved by quenching, with heating temperatures of up to 650 °C, and the crack tip introduced severe plastic deformation, all conditions that promote the γ-Co to ε-Co transformation. + + +*** Paragraph: Stellite 1 :ignore_heading: + +# Stellite 1 is a high-carbon and high-tungsten CoCrWMoCFeNiSiMn alloy, making it suitable for tribological applications such as valve seating, wear pads in gas turbines, bearing sleeves, slurry pumps, ball bearings and expeller screws. Stellite 1 alloy is labeled as CoCrW alloy in this paper. Stellite 21 is a low-carbon, high-molybdenum alloy used in applications such as forging and hot-stamping dies and valve trims in the chemical industry (Ref 1, 2). + +*** Paragraph: Tungsten & Molybdenum :ignore_heading: + +# Tungsten is primarily utilized in Stellite alloys to provide solid solution strength and carbide formation but can be replaced by Mo which also partitions to the carbides. + +# Tungsten (W) and molybdenum (Mo) have a similar function in providing additional strength to Co solid solution matrix of Stellite alloys due to large atomic size, that is, they impede dislocation flow when present as solute atoms\cite{boeckRelationshipsProcessingMicrostructure1985}. + + +Tungsten (W) and molybdenum (Mo) serve to provide additional strength to the matrix, when present in a small amount (<4 wt%), by virtue of their large atomic size that impedes dislocation flow when present as solute atoms. When present in large quantities, W and Mo also participate in formation of W-rich or Mo-rich carbides during alloy solidification + +\cite{davis2000nickel} +\cite{raghuRecentDevelopmentsWear1997} + +*** Paragraph: Tungsten Carbide :ignore_heading: + +There are two main phases in the tungsten-carbon system: the hexagonal $\textrm{WC}$ (ICDD Card# 03-065-4539, COD:2102265), denoted as $\delta-\textrm{WC}$, and multiple variations of hexagonal-close-packed \textrm{W}_2\textrm{C}$ (ICDD:00-002-1134, COD:1539792) \cite{kurlovPhaseEquilibriaWC2006}. + +# There are two hexagonal carbides in the tungsten – carbon system (Fig. 2): the monocarbide, WC, and the subcarbide [12070-13-2], W 2 C. The hexagonal WC, also called a-WC, decomposes at its incongruent melting point of 2776 C. Its range of homogeneity is extremely narrow: from 49.5 to 50.5 mol % C \cite{tulhoffCarbides2000} + +# Several stable tungsten carbide phases in the WC phase diagram. They consist of the S phase with simple hexagonal structure (prototype: WC), γ phase with face-centred-cubic structure (prototype: NaCl), and β phase with hexagonal-close-packed structure (prototype: PbO2). Both β and β phases are nonstoichiometric with a solubility of C wt.% in approximate ranges of 2.2∼3.0 and 3.6∼3.9, respectively. The S phase is a stoichiometric compound. For the sake of convenience, we represent the β, γ and δ phases by their corresponding compounds W2C, WC1-x and WC, respectively. \cite{gubischTribologicalCharacteristicsWC1x2005} + +The precipitation of the tungsten-rich phase $M_6C$ is closely related to the decomposition of the MC carbide, and the $M_6C$ only occurs in the vicinity of the MC \cite{jiangSecondaryM6CPrecipitation1999}, as $M_6C$ carbides form only when the tungsten and.or molybdenum content exceeds 4-6 a/o. + + +*** Paragraph: Chromium carbide :ignore_heading: + + +Although M23C6 can precipitate as primary carbide during solidification, it is most commonly found in secondary carbides along grain boundaries. + +M7C3 is a metastable pseudo-eutectic carbide that typically forms at lower carbon-chromium ratios and effectively transforms into secondary M23C6 upon heat treatment. + +In addition to being a carbide former, chromium provides solid solution strengthing and corrosion/oxidation resistance to the cobalt-based matrix. + + +The Cr7C3 carbide is unstable at high temperatures and transforms to M_{23}C_{6} upon heat treatment. Under further temperature and time, Cr_{23}C_{6} partially transforms to Cr_6C \cite{mohammadnezhadInsightMicrostructureCharacterization}. + +$$ 2Cr_{7}C_{3} + 9Cr \rightarrow Cr_{23}C_{6} $$ +$$ Cr_{23}C_{6} + 13Cr \rightarrow 6Cr_{6}C $$ + +$$ 23Cr_{7}C_{3} \rightarrow 7Cr_{23}C_6 + 27C $$ +$$ 6C + 23Cr \rightarrow Cr23C6 $$ + -# \end{tabular} -# \begin{tablenotes} -# \item[*] The footnote text. -# \item[a] Another footnote. -# \end{tablenotes} -# \end{threeparttable} -# \end{table} -# \end{landscape} *** Paragraph 2: Fundamental Mechanisms of Corrosion and Cavitation Resistance :ignore_heading: @@ -538,12 +625,33 @@ Stellite 19 The remarkable ability of Stellite alloys to withstand these specific challenges stems from key metallurgical features. Their corrosion resistance is primarily attributed to a high chromium content, typically 20-30 wt.%, which promotes the formation of a highly stable, tenacious, and self-healing chromium-rich passive oxide film on the material's surface; this film acts as a barrier isolating the underlying alloy from the corrosive environment. Alloying elements such as molybdenum and tungsten can further enhance this passivity, particularly improving resistance to localized corrosion phenomena like pitting and crevice corrosion in aggressive media. Concurrently, their outstanding cavitation resistance is largely derived from the unique behavior of the cobalt-rich matrix, which can undergo a stress-induced crystallographic transformation from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. This transformation, often facilitated by mechanical twinning, effectively absorbs the intense, localized impact energy from collapsing cavitation bubbles and leads to significant work hardening, thereby impeding material detachment and erosion. +Antony suggests that the cavitation-erosion resistance of Stellites derives from the matrix phase and is enhanced by the strain-induced fcc \textrightarrow hcp allotropic transformation \cite{antonyWearResistantCobaltBaseAlloys1983}. + +*** Paragraph: Lit review of corrosion :ignore_heading: + +The aqueous oxidation of Stellite 6 alloy was investigated in a 1979 study using X-ray Photoelectron Spectroscopy (XPS) \cite{mcintyreXRayPhotoelectronSpectroscopic1979}. Specimens were exposed to pH 10 water at 285°C. To understand the oxidation behavior, the study measured dissolved oxygen concentration against exposure duration. + + +The high-temperature corrosion resistance of stellite coatings is attributable to the formation of cobalt & chromium surface \cite{cesanekDeteriorationLocalMechanical2015}. + + +Heathcock et al found that carbides are selectively eroded, with the carbide-matrix interface acting as initiating erosion site \cite{heathcockCavitationErosionCobaltbased1981}. + + + *** Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation :ignore: *** Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance :ignore: *** Paragraph 6: Influence of HIPing :ignore: Compared with the case alloys, the HIPed alloys had relatively finer, rounded, and distributed carbides. + +*** Paragraph: Cavitation Erosion Resistance + + +The primary result of an erosion test is the cumulative mass loss versus time, which is then converted to volumetric loss and mean depth of erosion (MDE) versus time for the purposes of comparison between materials of different densities. The calculation of the mean depth of erosion for this test method should be performed in conformity with ASTM G-32. + + *** General Background # \section{General Background} @@ -578,7 +686,6 @@ Compared with the case alloys, the HIPed alloys had relatively finer, rounded, a Cavitation erosion presents a significant challenge in materials degradation in various industrial sectors, including hydroelectric power, marine propulsion, and nuclear systems, stemming from a complex interaction between fluid dynamics and material response \cite{francCavitationErosion2005, romoCavitationHighvelocitySlurry2012}. Hydrodynamically, the phenomenon initiates with the formation and subsequent violent collapse of vapor bubbles within a liquid, triggered by local pressures dropping to the saturated vapor pressure. These implosions generate intense, localized shockwaves and high-speed microjets that repeatedly impact adjacent solid surfaces \cite{gevariDirectIndirectThermal2020}. From a materials perspective, these impacts induce high stresses (100-1000 MPa) and high strain rates, surpassing material thresholds and leading to damage accumulation via plastic deformation, work hardening, fatigue crack initiation and propagation, and eventual material detachment. Mitigating this requires materials capable of effectively absorbing or resisting this dynamic loading, often under demanding conditions that may also include corrosion. -Stellite alloys, cobalt-chromium formulations that contain carbon, tungsten and/or molybdenum, represent a critical class of materials renowned for their wear resistance in such harsh environments \cite{shinEffectMolybdenumMicrostructure2003}. Their performance stems from a composite-like microstructure combining a strong cobalt-rich matrix, strengthened by solid solutions of Cr and W/Mo, with hard carbide precipitates (e.g., M7C3, M23C6) that impede wear and crack propagation \cite{ahmedSlidingWearBlended2021a, crookCobaltbaseAlloysResist1994}. % Martensitic transformation Crucially, the cobalt matrix often possesses a low stacking fault energy, facilitating a strain-induced martensitic transformation from a metastable face-centered cubic $\gamma$ phase to a hexagonal close-packed $\epsilon$ phase under the intense loading of cavitation. This transformation is a primary mechanism for dissipating impact energy and enhancing work hardening, contributing significantly to Stellite's characteristic cavitation resistance \cite{huangMicrostructureEvolutionMartensite2023, tawancyFccHcpTransformation1986}. @@ -616,6 +723,182 @@ Stellite 1 is a high-carbon and high-tungsten alloy, making it suitable for dema # \section{Model Validation} # \section{Result Analysis of Typical Load Case} +*** Strain hardening + + +# \cite{berchicheCavitationErosionModel2002} + +Cavitation bubble collapse induce a work hardening of the material surface, comparable to that obtained in conventional peening \cite{swietlickiEffectsShotPeening2022}, characterized by the thickness of the hardened layers and the shape of the strain profile below the surface. + +The strain profile within the material can usually be modeled by the following power law: + +\begin{equation} +\epsilon\left(x\right) = \epsilon_s {\left( 1 - \frac{x}{L} \right)}^{\theta} +\end{equation} + +where $\epsilon\left(x\right)$ is the strain at depth $x$ from the eroded surface, $\epsilon_s$ is the failure rupture strain on the eroded surface, $L$ is the thickness of the hardened layer, and $\theta$ is the shape factor of the power law. + +After each cycle, the thickness of the hardened layer $L$ and the surface strain $\epsilon_s$ will increase continuously until damage is initiated at the surface ($\epsilon_s$ reaches the failure rupture strain $\epsilon_R$), at which point the strain profile is in steady-state. + +\begin{equation} +\epsilon_R = \epsilon_{mean} {\left( 1 - \frac{\Delta L }{L+ \Delta L} \right)}^{\theta} +\end{equation} + + +*** Correlative empirical methods + +Empirical methods are common for addressing complex cavitation erosion, involving lab tests to correlate cavitation erosion resistance with mechanical properties. + +**** Karimi and Leo + +The Karimi and Leo phenomenological model describes cavitation erosion rate as a function of + +Karimi and Leo + + +**** Noskievic + +Noskievic formulated a mathematical relaxation model for the dynamics of the cavitation erosion using a differential equation applied to forced oscillations with damping: + +\begin{equation} +\frac{\mathrm{d}^2 v }{\mathrm{d}t^2} + 2 \alpha \frac{\mathrm{d} v }{\mathrm{d}t} + \beta^2 v = I +\end{equation} + +where $I$ is erosion intensity, which can vary linearly with time, $v = \frac{\mathrm{d} v }{\mathrm{d}t}$ is erosion rate, $\alpha$ is strain hardening or internal friction of material during plastic deformation, and $\beta$ is coefficient inversely proportional to material strength. The general solution of equation can be written as: +\begin{equation} +v = a f_0 \left( \delta, \tau \right) + b f_1 \left( \delta, \tau \right) +\end{equation} +\begin{equation*} +f_0\left(\ \delta,\tau \right) = \begin{cases*} +1 - \mathrm{exp}{ \left( - \delta \tau \right) } \left[ \dfrac{\delta}{\omega} \mathrm{sin} \left(\omega \tau\right) + \mathrm{cos}{\left( \omega \tau \right)} \right] +& \text{if} -1 < \delta < 1; \delta \neq 0 \\ +1 - \dfrac{1}{ {{\delta_0}^2} - 1} \left[ \delta_0^2 \mathrm{exp}{\left( -\dfrac{\tau}{\delta_0}}\right) - \mathrm{exp}{\left(- \delta_0 \tau\right)} \right] +& \text{if} \delta > 1 \\ +1 - \mathrm{cos}{\left( \tau \right)} +& \text{if} \delta = 0 \\ +1 - \left(1 + \tau \right) \mathrm{exp} \left( - \tau \right) +& if \delta = 1 +\end{cases*} +\end{equation*} +\begin{equation*} +f_1\left(\ \delta,\tau \right) = \begin{cases*} +1 - \dfrac{2\delta}{\tau} \left[ 1 - {\mathrm{exp}\left(-\delta \tau\right)} {\left[ {\mathrm{cos} \omega \tau} + {\epsilon \mathrm{sin} \omega \tau} \right]} \right] +& \text{if} -1 < \delta < 1; \delta \neq 0 \\ +1 - \dfrac{1}{\tau} \left( 2 \delta - \dfrac{1}{\delta_0 \left( \delta_0^2 - 1 \right)} \left[\mathrm{exp}{\left( -\delta_0 \tau \right) - \delta^4 \mathrm{exp}{\left( - \dfrac{\tau}{\delta_0} \right)} \right] \right) +& \text{if} \delta > 1 \\ +1 - \dfrac{ \mathrm{sin}{\left( \tau \right)} }{\tau} +& \text{if} \delta = 0 \\ +1 - \dfrac{2 \left[ 1 - \mathrm{exp}\left(-\tau\right) \right]}{\tau} + \mathrm{exp} \left( - \tau \right) +& if \delta = 1 +\end{cases*} +\end{equation*} +\begin{equation*} +\delta = \dfrac{\alpha}{\beta},\quad +\tau = \beta t,\quad +\epsilon = \dfrac{\delta^2 - 0.5}{\delta \sqrt{ 1 - \delta^2 } },\quad +\omega = \sqrt{1 - \delta^2},\quad +\delta_0 = \delta + \sqrt{ \delta^2 - 1 } +\end{equation*} + +***** Noskievic python function :noexport:ignore: + +#+NAME: noskievic +#+BEGIN_SRC python :exec no :exports none +def noskievic(t, alpha, beta, a, b): + """ + Calculates the erosion rate (v) based on Noskievic's relaxation model. + + This model describes the dynamics of cavitation erosion using a differential + equation applied to forced oscillations with damping. The general solution + for the erosion rate (v) is given by: + v = a * f0(delta, tau) + b * f1(delta, tau) + + where delta = alpha / beta and tau = beta * t. The functions f0 and f1 + have different forms depending on the value of delta. + + Args: + t (float): Time. + alpha (float): Material parameter representing strain hardening or + internal friction of the material during plastic + deformation (α). + beta (float): Material parameter, a coefficient inversely proportional + to material strength (β). + a (float): Coefficient for the f0 component in the general solution. + b (float): Coefficient for the f1 component in the general solution. + + Returns: + float: The calculated erosion rate (v) at the given time t. + + Notes: + The intermediate parameters used in the model are: + - delta (δ) = alpha / beta + - tau (τ) = beta * t + - omega (ω) = sqrt(1 - delta^2) (for -1 < delta < 1, delta != 0) + - delta_0 (δ₀) = delta + sqrt(delta^2 - 1) (for delta > 1) + - epsilon (ε) = (delta^2 - 0.5) / (delta * sqrt(1 - delta^2)) (for -1 < delta < 1, delta != 0) + + The functions f0(delta, tau) and f1(delta, tau) are piecewise + functions dependent on the value of delta: + - Case 1: -1 < delta < 1 and delta != 0 + - Case 2: delta > 1 + - Case 3: delta = 0 + - Case 4: delta = 1 + This implementation should handle these cases internally to compute + f0 and f1 correctly. + """ + import numpy as np + d = alpha/beta + tau = beta*t + if np.isclose(d,0.0): + print("d=0") + f0 = 1 - np.cos(tau) + f1 = 1 - ((np.sin(tau))/(tau)) + elif np.isclose(d,1.0): + print("d=1") + f0 = 1 - (1 + tau)*np.exp(-tau) + f1 = 1 - 2*((1 - np.exp(-tau))/(tau)) + np.exp(-tau) + elif -1 < d and d < 1: + e = (d**2 - 0.5)/(d*np.sqrt(1 - d**2)) + w = np.sqrt(1 - d**2) + f0 = 1 - np.exp(-d*tau)*((d/w)*np.sin(w*tau) + np.cos(w*tau)) + f1 = 1 - ((2*d)/(tau))*(1 - np.exp(-d*tau)*( np.cos(w*tau) + e*np.sin(w*tau) )) + elif d > 1: + d_0 = d + np.sqrt(d**2 - 1) + f0 = 1 - (1/(d_0**2 - 1))*(d_0**2 * np.exp(-tau/d_0) - np.exp(-d_0 * tau)) + f1 = 1 - (1/tau)*(2*d - (1/(d_0*(d_0**2-1)))*( np.exp(-d_0*tau) - d**4*np.exp(-tau/d_0) ) ) + else: + raise ValueError("d is not within bounds") + + return a*f0 + b*f1 +#+END_SRC + + +**** Hoff and Langbein equation + +Hoff and Langbein proposed a simple exponential function for the rate of erosion, representing the normalized erosion rate requiring only the +A simple exponential function for the rate of erosion was proposed by Hoff and Langbein, + +$$ \frac{ \dot{e} }{ \dot{e_{max}} } = 1 - e^{\frac{-t_i}{t}} $$ + +$\dot{e}$ - erosion rate at any time t +$\dot{e_{max}}$ - Maximum of peak erosion rate +$t_i$ - incubation period (intercept on time axis extended from linear potion of erosion-time curve) +$t$ - exposure time + +**** L Sitnik model + +$$ V = V_o {\left[ ln\left( \frac{t}{t_o} + 1 \right) \right]} ^ {\beta} $$ + + +$$ \dot{V} = \frac{\beta V_o}{t + t_o} {\left[ ln \left( \frac{t}{t_o} + 1 \right) \right]}^{\beta - 1}$$ + +V_o > 0 +t_o > 0 +\beta >= 1 + + + + ** Experimental Investigations *** Materials and Microstructure @@ -647,21 +930,13 @@ The Vickers microhardness was measured using a Wilson hardness tester under load - # \chapter{Cavitation Erosion} \section{Experimental Test Procedure} - - - \subsection{Hardness Tests} - - \subsection{Cavitation} - \section{Relationships between cavitation erosion resistance and mechanical properties} - \section{Influence of vibratory amplitude} % Insert the whole spiel by that French dude about displacement and pressure (and then ruin it) @@ -681,20 +956,12 @@ Maximum erosion rate is approximately proportional to the 1.5 power of p-p ampli The propagation of ultrasonic waves may result in thermal energy absorption or into chemical energy, resulting in reduced power. For the purposes of converting data from studies that do not use an amplitude of 50um, a exponent factor of 1.5 has been applied. +* COMMENT Appendix :ignore_heading: -** Cavitation :noexport: - -#+LaTeX: \pagestyle{chapter} -#+LaTeX: \subfile{Chapters/Cavitation} -#+LaTeX: \subfile{Chapters/Chapter1-Introduction} -#+LaTeX: \subfile{Chapters/Chapter2} -#+LaTeX: \subfile{Chapters/Chapter3} #+LaTeX: \appendix #+LaTeX: \subfile{Appendices/Appendix1} - - - +* COMMENT Publications :ignore_heading: #+LaTeX: %% add publications in pdf format #+LaTeX: \clearpage @@ -702,8 +969,7 @@ The propagation of ultrasonic waves may result in thermal energy absorption or i #+LaTeX: \addcontentsline{toc}{chapter}{\thechapter\ \ \ \ Publication 1} #+LaTeX: \includepdf[pages=-]{Publications/Publication1.pdf} - -* Bibliography :noexport: +* Bibliography :ignore_heading: # using biblatex rather than bibtex to easily have further reading and references diff --git a/Thesis.pdf b/Thesis.pdf index cac01c8..9e9e66c 100644 --- a/Thesis.pdf +++ b/Thesis.pdf @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:732b0a7ed773d6c1bf2a7e4ec2fb580157deba9dc353e1c0ed9044be24f08de5 -size 140349 +oid sha256:e45807ab4f51f3d906e0a3ac291b9ff107a7b79155ee702f085c6d6495bdeb05 +size 242457 diff --git a/Thesis.tex b/Thesis.tex index ba426a3..be3040a 100644 --- a/Thesis.tex +++ b/Thesis.tex @@ -1,4 +1,4 @@ -% Created 2025-05-12 ن 00:31 +% Created 2025-05-12 ن 08:48 % Intended LaTeX compiler: pdflatex \documentclass[11pt]{report} \usepackage[utf8]{inputenc} @@ -12,16 +12,17 @@ \usepackage{amssymb} \usepackage{capt-of} \usepackage{hyperref} -\usepackage{multirow} -\usepackage[flushleft]{threeparttable} % http://ctan.org/pkg/threeparttable -\usepackage{booktabs,caption} \graphicspath{{expt/}} +\usepackage{afterpage} \usepackage{pdflscape} +\usepackage{booktabs,caption} \usepackage{longtable} -\usepackage{threeparttablex} +\usepackage[flushleft]{threeparttable} \usepackage{multirow} \usepackage{caption} \usepackage{booktabs} % Added for nicer rules +\usepackage{textcomp} +\usepackage{mathtools} \usepackage{graphicx} % include graphics \usepackage{fancyhdr} % layout \usepackage[english]{babel} @@ -29,7 +30,7 @@ \usepackage[T1]{fontenc} % font \usepackage{csquotes} %\usepackage[defernumbers=true, sorting=none]{biblatex} -\usepackage[ backend=biber, maxbibnames=999]{biblatex} +\usepackage[defernumbers=true, bibstyle=ieee, citestyle=numeric-comp, backend=biber, maxbibnames=999]{biblatex} \usepackage{setspace} % spacing % \usepackage[left=4cm,right=2cm,top=2cm,bottom=2cm]{geometry} @@ -149,9 +150,9 @@ filecolor = black % url which open local files } %% modified reference function %% https://tex.stackexchange.com/a/438998 -\newcommand\eref[1]{equation~(\ref{#1})} -\newcommand\tref[1]{table~\ref{#1}} -\newcommand\fref[1]{figure~\ref{#1}} +\newcommand\eref[1]{Equation~(\ref{#1})} +\newcommand\tref[1]{Table~\ref{#1}} +\newcommand\fref[1]{Figure~\ref{#1}} %% 1.5 line spacing \setstretch{1.5} %% The title of Thesis @@ -176,9 +177,17 @@ filecolor = black % url which open local files \newcommand{\monthDate}{September} %% Year of submission \newcommand{\yearDate}{2042} -\newacronym{gcd}{GCD}{Greatest Common Divisor} -\newacronym{lcm}{LCM}{Least Common Multiple} \usepackage{subfiles} +\newacronym{sem}{SEM}{Scanning Electron Microscope/Microscopy} +\newacronym{edx}{EDX}{Energy-Dispersive X-ray} +\newacronym{xrd}{XRD}{X-ray Diffraction} +\newacronym{hv}{HV}{Hardness Vickers Scale} +\newacronym{hip}{HIP}{Hot Isostatically Pressed} +\newacronym{fcc}{FCC}{Face Centred Cubic} +\newacronym{hcp}{HCP}{Hexagonal Close Packed} +\newacronym{se}{SE}{Secondary Electrons} +\newacronym{bse}{BSE}{Backscatter Electrons} +\newacronym{pdf}{PDF}{Powder Diffraction File} \date{} \title{} \hypersetup{ @@ -196,7 +205,6 @@ filecolor = black % url which open local files \pagestyle{empty} -\begin{LATEX} \begin{center} \vspace*{15pt}\par \setstretch{1} @@ -242,10 +250,8 @@ filecolor = black % url which open local files The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. \end{flushleft} \end{center} -\end{LATEX} -\begin{LATEX} \clearpage \begin{center} \LARGE\textbf {Abstract} @@ -254,10 +260,8 @@ The copyright in this thesis is owned by the author. Any quotation from the thes \noindent In accordance with the Academic Regulations the thesis must contain an abstract preferably not exceeding 200 words, bound in to precede the thesis. The abstract should appear on its own, on a single page. The format should be the same as that of the main text. The abstract should provide a synopsis of the thesis and shall state clearly the nature and scope of the research undertaken and of the contribution made to the knowledge of the subject treated. There should be a brief statement of the method of investigation where appropriate, an outline of the major divisions or principal arguments of the work and a summary of any conclusions reached. The abstract must follow the Title Page. -\end{LATEX} -\begin{LATEX} \clearpage \begin{center} \LARGE\textbf {Dedication} @@ -266,9 +270,7 @@ In accordance with the Academic Regulations the thesis must contain an abstract If a dedication is included then it should be immediately after the Abstract page.\par I don't what it is actually. -\end{LATEX} -\begin{LATEX} \clearpage \begin{center} \LARGE\textbf {Acknowledgements} @@ -276,32 +278,43 @@ I don't what it is actually. \vspace{5pt} \noindent I wanna thanks all coffee and tea manufacturers and sellers that made the completion of this work possible. -\end{LATEX} + +{ +\setstretch{1} +\hypersetup{linkcolor=black} +\tableofcontents + +\listoftables % optional + + +\listoffigures % optional + + +\glsaddall % this is to include all acronym. You can do a sort of citation for acronym and include only the one you use, Look at the glossary package for details. +\printnoidxglossary[type=\acronymtype, title=Glossary] % optional +} \clearpage \pagestyle{chapter} \part{Chapters} -\label{sec:org82d3bd9} +\label{sec:orga0be3a3} \chapter{Introduction} -\label{sec:org2e0b8b2} - - -Stellites are a cobalt-base superalloy used in aggresive service environments due to retention of strength, wear resistance, and oxidation resistance at high temperature \cite{ahmedStructurePropertyRelationships2014}. - -Originating in 1907 with Elwood Haynes's development of alloys like Stellite 6, Stellites quickly found use in orthopedic implants, machine tools, and nuclear components, and new variations on the original CoCrWC and CoCrMoC alloys are spreading to new sectors like oil \& gas and chemical processing \cite{malayogluComparingPerformanceHIPed2003, ahmedStructurePropertyRelationships2014}. +\label{sec:org4e058f3} -Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, 0.1-3.3 wt C, and optional trace elements of Fe, Ni, Si, P, S, B, Ln, Mn, as seen in Table \ref{tab:stellite_composition} \cite{ahmedMappingMechanicalProperties2023, alimardaniEffectLocalizedDynamic2010, ashworthMicrostructurePropertyRelationships1999, bunchCorrosionGallingResistant1989, davis2000nickel, desaiEffectCarbideSize1984, ferozhkhanMetallurgicalStudyStellite2017, pacquentinTemperatureInfluenceRepair2025, ratiaComparisonSlidingWear2019, zhangFrictionWearCharacterization2002}. The microstructure of Stellite alloys consists of a CoCr(W,Mo) matrix with solid solution strengthening, with hard carbide phases, usually with Cr (e.g., \(M_{7}C_{3}\), \(M_{23}C_{6}\)), and W/Mo (e.g. \(MC\), \(M_{6}C\) ); the proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), as well as processing routes. In addition to the solid solution toughness and carbide hardness, the stress-induced FCC tp HCP phase transformation of the Co-based solid solution further increases wear resistance through work hardening. +Stellites are cobalt-base superalloys used in aggresive service environments due to retention of strength, wear resistance, and oxidation resistance at high temperature \cite{ahmedStructurePropertyRelationships2014, shinEffectMolybdenumMicrostructure2003}. Originating with Elwood Haynes's development of alloys like Stellite 6 in the early 1900s \cite{hasanBasicsStellitesMachining2016}, stellites quickly found use in medical implants \& tools, machine tools, and nuclear components, and new variations on the original CoCrWC and CoCrMoC alloys are spreading to new sectors like oil \& gas and chemical processing \cite{malayogluComparingPerformanceHIPed2003, ahmedStructurePropertyRelationships2014, raghuRecentDevelopmentsWear1997}. -\begin{LATEX} +The main alloying elements in Stellite alloys are cobalt (Co), chromium (25-33 wt\% Cr), tungsten (0-18 wt\% W), molybdenum (0-18 wt\% Mo), carbon (0.1-3.3 wt\% C), and trace elements iron (Fe), nickel (Ni), silicon (Si), phosphorus (P), sulphur (S), boron (B), lanthanum (La), \& manganese (Mn); \tref{tab:stellite_composition} summarizes the nominal and measured composition of commonly used Stellite alloys \cite{ahmedMappingMechanicalProperties2023, alimardaniEffectLocalizedDynamic2010, ashworthMicrostructurePropertyRelationships1999, bunchCorrosionGallingResistant1989, davis2000nickel, desaiEffectCarbideSize1984, ferozhkhanMetallurgicalStudyStellite2017, pacquentinTemperatureInfluenceRepair2025, ratiaComparisonSlidingWear2019, zhangFrictionWearCharacterization2002}. Stellite alloys possess a composite-like microstructure, combining a cobalt-rich matrix strengthened by solid solutions of chromium, tungsten, \& molybdenum, with hard carbide phases with carbide formers Cr (of carbide type \(\textrm{M}_{7}\textrm{C}_{3}\) \& \(\textrm{M}_{23}\textrm{C}_{6}\)) and W/Mo (of carbide type \(\textrm{MC}\) \& \(\textrm{M}_{6}\textrm{C}\)), that impede wear and crack propagation \cite{ahmedSlidingWearBlended2021a, crookCobaltbaseAlloysResist1994}. The proportion and type of carbides depend on carbon content and the relative amounts of carbon with carbide formers (Cr, W, Mo), which greatly influence alloy performance and intended applications; high carbon alloy (>1.2 wt\%) have greater carbide formation and are primarily used for wear resistance, low carbon alloys (<0.5 wt\%) are used for enhanced corrosion resistance, while medium carbon alloys (0.5 wt\% - 1.2 wt\%) are used in applications requiring a combination of wear and corrosion resistance \cite{davis2000nickel}. + + +\afterpage{% \begin{landscape} \begin{ThreePartTable} -\centering \caption{Stellite Compositions} \label{tab:stellite_composition} @@ -310,9 +323,9 @@ Stellites generally contain 25-33 wt Cr, 4-18 W/Mo, 0.1-3.3 wt C, and optional t % \toprule & \multicolumn{2}{c}{Base} & \multicolumn{2}{c}{Refractory} & Carbon & \multicolumn{8}{c}{Others} & \multicolumn{3}{c}{} \\ \toprule -Alloy & +\textbf{Alloy} & \textbf{Co} & \textbf{Cr} & \textbf{W} & \textbf{Mo} & \textbf{C} & \textbf{Fe} & -\textbf{Ni} & \textbf{Si} & \textbf{P} & \textbf{S} & \textbf{B} & \textbf{Ln} & +\textbf{Ni} & \textbf{Si} & \textbf{P} & \textbf{S} & \textbf{B} & \textbf{La} & \textbf{Mn} & \textbf{Ref} & \textbf{Process Type} & \textbf{Observation} \\ \midrule @@ -434,34 +447,90 @@ Stellite 19 % & 37.2 & 33 & & 18 & 2.5 & 3 & 3 & 1.5 & & & 0.3 & & 1.5 & \cite{davis2000nickel} & \multicolumn{2}{c}{Nominal composition} \\ \end{longtable} -\begin{TableNotes} +\begin{tablenotes} + \small \item[a] Hot Isostatic Pressing \item[b] Inductively coupled plasma atomic emission spectroscopy \item[c] Shielded metal arc welding \item[d] Gas tungsten Arc Welding \item[e] Plasma transfered Arc Welding -\end{TableNotes} +\end{tablenotes} \end{ThreePartTable} \end{landscape} -\end{LATEX} +} + + + + + +The Co solid solution in Stellites is a metastable fcc crystal with a very low stacking fault energy. + +\cite{davis2000nickel, frenkMicrostructuralEffectsSliding1994} + + + +Tungsten (W) and molybdenum (Mo) serve to provide additional strength to the matrix, when present in a small amount (<4 wt\%), by virtue of their large atomic size that impedes dislocation flow when present as solute atoms. When present in large quantities, W and Mo also participate in formation of W-rich or Mo-rich carbides during alloy solidification + +\cite{davis2000nickel} +\cite{raghuRecentDevelopmentsWear1997} + + +There are two main phases in the tungsten-carbon system: the hexagonal \(\textrm{WC}\) (ICDD Card\# 03-065-4539, COD:2102265), denoted as \(\delta-\textrm{WC}\), and multiple variations of hexagonal-close-packed \textrm{W}\textsubscript{2\textrm}\{C\}\$ (ICDD:00-002-1134, COD:1539792) \cite{kurlovPhaseEquilibriaWC2006}. + +The precipitation of the tungsten-rich phase \(M_6C\) is closely related to the decomposition of the MC carbide, and the \(M_6C\) only occurs in the vicinity of the MC \cite{jiangSecondaryM6CPrecipitation1999}, as \(M_6C\) carbides form only when the tungsten and.or molybdenum content exceeds 4-6 a/o. + + + + +Although M23C6 can precipitate as primary carbide during solidification, it is most commonly found in secondary carbides along grain boundaries. + +M7C3 is a metastable pseudo-eutectic carbide that typically forms at lower carbon-chromium ratios and effectively transforms into secondary M23C6 upon heat treatment. + +In addition to being a carbide former, chromium provides solid solution strengthing and corrosion/oxidation resistance to the cobalt-based matrix. + + +The Cr7C3 carbide is unstable at high temperatures and transforms to M\textsubscript{23}C\textsubscript{6} upon heat treatment. Under further temperature and time, Cr\textsubscript{23}C\textsubscript{6} partially transforms to Cr\textsubscript{6C} \cite{mohammadnezhadInsightMicrostructureCharacterization}. + +$$ 2Cr_{7}C_{3} + 9Cr \rightarrow Cr_{23}C_{6} $$ +$$ Cr_{23}C_{6} + 13Cr \rightarrow 6Cr_{6}C $$ + +$$ 23Cr_{7}C_{3} \rightarrow 7Cr_{23}C_6 + 27C $$ +$$ 6C + 23Cr \rightarrow Cr23C6 $$ + + The remarkable ability of Stellite alloys to withstand these specific challenges stems from key metallurgical features. Their corrosion resistance is primarily attributed to a high chromium content, typically 20-30 wt.\%, which promotes the formation of a highly stable, tenacious, and self-healing chromium-rich passive oxide film on the material's surface; this film acts as a barrier isolating the underlying alloy from the corrosive environment. Alloying elements such as molybdenum and tungsten can further enhance this passivity, particularly improving resistance to localized corrosion phenomena like pitting and crevice corrosion in aggressive media. Concurrently, their outstanding cavitation resistance is largely derived from the unique behavior of the cobalt-rich matrix, which can undergo a stress-induced crystallographic transformation from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. This transformation, often facilitated by mechanical twinning, effectively absorbs the intense, localized impact energy from collapsing cavitation bubbles and leads to significant work hardening, thereby impeding material detachment and erosion. + +Antony suggests that the cavitation-erosion resistance of Stellites derives from the matrix phase and is enhanced by the strain-induced fcc \textrightarrow hcp allotropic transformation \cite{antonyWearResistantCobaltBaseAlloys1983}. + + +The aqueous oxidation of Stellite 6 alloy was investigated in a 1979 study using X-ray Photoelectron Spectroscopy (XPS) \cite{mcintyreXRayPhotoelectronSpectroscopic1979}. Specimens were exposed to pH 10 water at 285°C. To understand the oxidation behavior, the study measured dissolved oxygen concentration against exposure duration. + + +The high-temperature corrosion resistance of stellite coatings is attributable to the formation of cobalt \& chromium surface \cite{cesanekDeteriorationLocalMechanical2015}. + + +Heathcock et al found that carbides are selectively eroded, with the carbide-matrix interface acting as initiating erosion site \cite{heathcockCavitationErosionCobaltbased1981}. \section{Paragraph 4: Synergistic Challenges in Applications Prone to Corrosion and Cavitation\hfill{}\textsc{ignore}} -\label{sec:org3496e89} +\label{sec:org6e56f58} \section{Paragraph 5: Research and Development for Enhanced Corrosion and Cavitation Performance\hfill{}\textsc{ignore}} -\label{sec:org95f97c6} +\label{sec:org771c866} \section{Paragraph 6: Influence of HIPing\hfill{}\textsc{ignore}} -\label{sec:org7bb1376} +\label{sec:orgc7253a3} Compared with the case alloys, the HIPed alloys had relatively finer, rounded, and distributed carbides. +\section{Paragraph: Cavitation Erosion Resistance} +\label{sec:orgc39e335} + + +The primary result of an erosion test is the cumulative mass loss versus time, which is then converted to volumetric loss and mean depth of erosion (MDE) versus time for the purposes of comparison between materials of different densities. The calculation of the mean depth of erosion for this test method should be performed in conformity with ASTM G-32. \section{General Background} -\label{sec:orgcf64eda} +\label{sec:orgf417579} \%cite:@Franc2004265, @Romo201216, @Kumar2024, @Kim200685, @Gao2024, @20221xix, @Usta2023, @Cheng2023, @Zheng2022 Cavitation erosion presents a significant challenge in materials degradation in various industrial sectors, including hydroelectric power, marine propulsion, and nuclear systems, stemming from a complex interaction between fluid dynamics and material response \cite{francCavitationErosion2005, romoCavitationHighvelocitySlurry2012}. Hydrodynamically, the phenomenon initiates with the formation and subsequent violent collapse of vapor bubbles within a liquid, triggered by local pressures dropping to the saturated vapor pressure. These implosions generate intense, localized shockwaves and high-speed microjets that repeatedly impact adjacent solid surfaces \cite{gevariDirectIndirectThermal2020}. From a materials perspective, these impacts induce high stresses (100-1000 MPa) and high strain rates, surpassing material thresholds and leading to damage accumulation via plastic deformation, work hardening, fatigue crack initiation and propagation, and eventual material detachment. Mitigating this requires materials capable of effectively absorbing or resisting this dynamic loading, often under demanding conditions that may also include corrosion. -Stellite alloys, cobalt-chromium formulations that contain carbon, tungsten and/or molybdenum, represent a critical class of materials renowned for their wear resistance in such harsh environments \cite{shinEffectMolybdenumMicrostructure2003}. Their performance stems from a composite-like microstructure combining a strong cobalt-rich matrix, strengthened by solid solutions of Cr and W/Mo, with hard carbide precipitates (e.g., M7C3, M23C6) that impede wear and crack propagation \cite{ahmedSlidingWearBlended2021a, crookCobaltbaseAlloysResist1994}. \% Martensitic transformation Crucially, the cobalt matrix often possesses a low stacking fault energy, facilitating a strain-induced martensitic transformation from a metastable face-centered cubic \(\gamma\) phase to a hexagonal close-packed \(\epsilon\) phase under the intense loading of cavitation. This transformation is a primary mechanism for dissipating impact energy and enhancing work hardening, contributing significantly to Stellite's characteristic cavitation resistance \cite{huangMicrostructureEvolutionMartensite2023, tawancyFccHcpTransformation1986}. @@ -491,12 +560,110 @@ Stellite 1 is a high-carbon and high-tungsten alloy, making it suitable for dema \section{Literature Survey} \section{Cavitation Tests} \chapter{Analytical Investigations} -\label{sec:orgbc9a8d0} +\label{sec:org701ceff} +\section{Strain hardening} +\label{sec:orgae434ab} + + +Cavitation bubble collapse induce a work hardening of the material surface, comparable to that obtained in conventional peening \cite{swietlickiEffectsShotPeening2022}, characterized by the thickness of the hardened layers and the shape of the strain profile below the surface. + +The strain profile within the material can usually be modeled by the following power law: + +\begin{equation} +\epsilon\left(x\right) = \epsilon_s {\left( 1 - \frac{x}{L} \right)}^{\theta} +\end{equation} + +where \(\epsilon\left(x\right)\) is the strain at depth \(x\) from the eroded surface, \(\epsilon_s\) is the failure rupture strain on the eroded surface, \(L\) is the thickness of the hardened layer, and \(\theta\) is the shape factor of the power law. + +After each cycle, the thickness of the hardened layer \(L\) and the surface strain \(\epsilon_s\) will increase continuously until damage is initiated at the surface (\(\epsilon_s\) reaches the failure rupture strain \(\epsilon_R\)), at which point the strain profile is in steady-state. + +\begin{equation} +\epsilon_R = \epsilon_{mean} {\left( 1 - \frac{\Delta L }{L+ \Delta L} \right)}^{\theta} +\end{equation} +\section{Correlative empirical methods} +\label{sec:orga1e98e9} + +Empirical methods are common for addressing complex cavitation erosion, involving lab tests to correlate cavitation erosion resistance with mechanical properties. +\begin{enumerate} +\item Karimi and Leo +\label{sec:org2cce5b5} + +The Karimi and Leo phenomenological model describes cavitation erosion rate as a function of + +Karimi and Leo +\item Noskievic +\label{sec:org2309ffd} + +Noskievic formulated a mathematical relaxation model for the dynamics of the cavitation erosion using a differential equation applied to forced oscillations with damping: + +\begin{equation} +\frac{\mathrm{d}^2 v }{\mathrm{d}t^2} + 2 \alpha \frac{\mathrm{d} v }{\mathrm{d}t} + \beta^2 v = I +\end{equation} + +where \(I\) is erosion intensity, which can vary linearly with time, \(v = \frac{\mathrm{d} v }{\mathrm{d}t}\) is erosion rate, \(\alpha\) is strain hardening or internal friction of material during plastic deformation, and \(\beta\) is coefficient inversely proportional to material strength. The general solution of equation can be written as: +\begin{equation} +v = a f_0 \left( \delta, \tau \right) + b f_1 \left( \delta, \tau \right) +\end{equation} +\begin{equation*} +f_0\left(\ \delta,\tau \right) = \begin{cases*} +1 - \mathrm{exp}{ \left( - \delta \tau \right) } \left[ \dfrac{\delta}{\omega} \mathrm{sin} \left(\omega \tau\right) + \mathrm{cos}{\left( \omega \tau \right)} \right] +& \text{if} -1 < \delta < 1; \delta \neq 0 \\ +1 - \dfrac{1}{ {{\delta_0}^2} - 1} \left[ \delta_0^2 \mathrm{exp}{\left( -\dfrac{\tau}{\delta_0}}\right) - \mathrm{exp}{\left(- \delta_0 \tau\right)} \right] +& \text{if} \delta > 1 \\ +1 - \mathrm{cos}{\left( \tau \right)} +& \text{if} \delta = 0 \\ +1 - \left(1 + \tau \right) \mathrm{exp} \left( - \tau \right) +& if \delta = 1 +\end{cases*} +\end{equation*} +\begin{equation*} +f_1\left(\ \delta,\tau \right) = \begin{cases*} +1 - \dfrac{2\delta}{\tau} \left[ 1 - {\mathrm{exp}\left(-\delta \tau\right)} {\left[ {\mathrm{cos} \omega \tau} + {\epsilon \mathrm{sin} \omega \tau} \right]} \right] +& \text{if} -1 < \delta < 1; \delta \neq 0 \\ +1 - \dfrac{1}{\tau} \left( 2 \delta - \dfrac{1}{\delta_0 \left( \delta_0^2 - 1 \right)} \left[\mathrm{exp}{\left( -\delta_0 \tau \right) - \delta^4 \mathrm{exp}{\left( - \dfrac{\tau}{\delta_0} \right)} \right] \right) +& \text{if} \delta > 1 \\ +1 - \dfrac{ \mathrm{sin}{\left( \tau \right)} }{\tau} +& \text{if} \delta = 0 \\ +1 - \dfrac{2 \left[ 1 - \mathrm{exp}\left(-\tau\right) \right]}{\tau} + \mathrm{exp} \left( - \tau \right) +& if \delta = 1 +\end{cases*} +\end{equation*} +\begin{equation*} +\delta = \dfrac{\alpha}{\beta},\quad +\tau = \beta t,\quad +\epsilon = \dfrac{\delta^2 - 0.5}{\delta \sqrt{ 1 - \delta^2 } },\quad +\omega = \sqrt{1 - \delta^2},\quad +\delta_0 = \delta + \sqrt{ \delta^2 - 1 } +\end{equation*} +\item Hoff and Langbein equation +\label{sec:org36031ea} + +Hoff and Langbein proposed a simple exponential function for the rate of erosion, representing the normalized erosion rate requiring only the +A simple exponential function for the rate of erosion was proposed by Hoff and Langbein, + +$$ \frac{ \dot{e} }{ \dot{e_{max}} } = 1 - e^{\frac{-t_i}{t}} $$ + +\(\dot{e}\) - erosion rate at any time t +\(\dot{e_{max}}\) - Maximum of peak erosion rate +\(t_i\) - incubation period (intercept on time axis extended from linear potion of erosion-time curve) +\(t\) - exposure time +\item L Sitnik model +\label{sec:org2511802} + +$$ V = V_o {\left[ ln\left( \frac{t}{t_o} + 1 \right) \right]} ^ {\beta} $$ + + +$$ \dot{V} = \frac{\beta V_o}{t + t_o} {\left[ ln \left( \frac{t}{t_o} + 1 \right) \right]}^{\beta - 1}$$ + +V\textsubscript{o} > 0 +t\textsubscript{o} > 0 +\(\beta\) >= 1 +\end{enumerate} \chapter{Experimental Investigations} -\label{sec:orgd1434a3} +\label{sec:orgd786c5f} \section{Materials and Microstructure} -\label{sec:org51ee073} +\label{sec:org74c8cac} The HIPed alloy was produced via canning the gas-atomized powders at 1200C and 100 MPa pressure for 4h, while the cast alloys were produced via sand casting. \% Sieve analysis and description of powders @@ -510,19 +677,12 @@ Image analysis was also conducted to ascertain the volume fractions of individua The Vickers microhardness was measured using a Wilson hardness tester under loads of BLAH. Thirty measurements under each load were conducted on each sample. \chapter{Discussion} -\label{sec:org03afda8} +\label{sec:orgc2d24d7} \section{Experimental Test Procedure} - - - \subsection{Hardness Tests} - - \subsection{Cavitation} - \section{Relationships between cavitation erosion resistance and mechanical properties} - \section{Influence of vibratory amplitude} \% Insert the whole spiel by that French dude about displacement and pressure (and then ruin it) @@ -540,4 +700,10 @@ Thiruvengadum \cite{thiruvengadamTheoryErosion1967} and Hobbs find that erosion Tomlinson et al find that erosion rate is linearly proportional to peak-to-peak amplitude in copper [3]. Maximum erosion rate is approximately proportional to the 1.5 power of p-p amplitude [4]. The propagation of ultrasonic waves may result in thermal energy absorption or into chemical energy, resulting in reduced power. For the purposes of converting data from studies that do not use an amplitude of 50um, a exponent factor of 1.5 has been applied. + + + + +\label{Bibliography} +\printbibliography[title={References}, heading=bibintoc, resetnumbers=true] \end{document} diff --git a/Untitled.ipynb b/Untitled.ipynb index 58ebd52..970590d 100644 --- a/Untitled.ipynb +++ b/Untitled.ipynb @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:91b1e3ed656e143808e0a36d8cf744f04fcac4e91d2b1a7ce302748e6c11d946 -size 116599 +oid sha256:4b47f5f379d722a0341bfcfa7ca2e1d9045f5bab225443a5c42505bef3fe280a +size 144241 diff --git a/references.bib b/references.bib index cf76acc..4873af4 100644 --- a/references.bib +++ b/references.bib @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:31d42bf0d81aa588ce93b61253480204410a6cbb466f1e37e290bece195509b3 -size 2279154 +oid sha256:1f2cfd024fcd2eca9269e8ee5cd156a5e0a96da5ab1570638f42069c8a8939ea +size 2802806 diff --git a/thesis_original.org b/thesis_original.org index 00ac3d3..730727b 100644 --- a/thesis_original.org +++ b/thesis_original.org @@ -19,16 +19,6 @@ Steller \cite{} noted the poor agreement beween Steller [72,73] observed that often there was poor agreement between cavitation resistance of materials measured in different types of test rigs and this proved to be a stumbling block in the prediction of material performance in the prototype. -* Phase Transformation - -The Cr7C3 carbide is unstable at high temperatures and transforms to M_{23}C_{6} upon heat treatment. Under further temperature and time, Cr_{23}C_{6} partially transforms to Cr_6C \cite{mohammadnezhadINSIGHTMICROSTRUCTURECHARACTERIZATION2018}. - -2M_{7}C_{3} + 9M \rightarrow M_{23}C_{6} - -M_{23}C_{6} + 13M \rightarrow 6M_{6}C - - - * Grain size @@ -37,29 +27,6 @@ ASTM E112 Heyn Lineal Interceot Procedure -* Stellite Introduction - -mp-1221498 - - - -Chromium provides superior hot oxidation and corrosion resistance by forming resilient Cr2O3 scales. - -many cobalt-based alloys, most of its service strength relies on generating and controlling MC, M7C3, and M23C6 carbide particles within grains, interdendritic spaces, and grain boundaries. - - -M7C3 is a metastable pseudo-eutectic carbide typically formed at lower carbon-chromium ratios and effectively transforms into secondary M23C6 upon heat treatment according to the following reactions: [4] - -$$ 23Cr_{7}C_{3} \rightarrow 7Cr_{23}C_6 + 27C $$ -$$ 6C + 23Cr \rightarrow Cr23C6 $$ - - - -* FCC to HCP Transformation - -# I *love* this paragraph -# https://doi.org/10.1016/j.surfcoat.2018.11.011 -# The ε-Co and γ-Co phase are the main phases in Co alloys [39]. According to the phase diagram, the ε-Co phase is more stable at room temperature [40]. However, the γ-Co to ε-Co transformation rarely occurs under normal cooling conditions, and as a result, the γ-Co phase is generally retained at room temperature [39], as we found in the as-deposited Stellite 6 coatings. Nevertheless, this transformation can be triggered athermally (e.g. quenching from temperature of γ-Co) [25,41], isothermally (e.g. aging at temperatures between 650 °C and 950 °C) [35,42,43], or by strain [30,31]. In this study, the thermal fatigue process was achieved by quenching, with heating temperatures of up to 650 °C, and the crack tip introduced severe plastic deformation, all conditions that promote the γ-Co to ε-Co transformation. * Strain Energy @@ -83,36 +50,6 @@ CavitationErosionBehaviourSteelPlateScroll -* Karimi and Leo - -The Karimi and Leo phenomenological model describes cavitation erosion rate as a function of - -Karimi and Leo - -* Hoff and Langbein equation - -Hoff and Langbein proposed a simple exponential function for the rate of erosion, representing the normalized erosion rate requiring only the -A simple exponential function for the rate of erosion was proposed by Hoff and Langbein, - -$$ \frac{ \dot{e} }{ \dot{e_{max}} } = 1 - e^{\frac{-t_i}{t}} $$ - -$\dot{e}$ - erosion rate at any time t -$\dot{e_{max}}$ - Maximum of peak erosion rate -$t_i$ - incubation period (intercept on time axis extended from linear potion of erosion-time curve) -$t$ - exposure time - -* L Sitnik model - -$$ V = V_o {\left[ ln\left( \frac{t}{t_o} + 1 \right) \right]} ^ {\beta} $$ - - -$$ \dot{V} = \frac{\beta V_o}{t + t_o} {\left[ ln \left( \frac{t}{t_o} + 1 \right) \right]}^{\beta - 1}$$ - -V_o > 0 -t_o > 0 -\beta >= 1 - - * Timeline latex